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Abstract. The contribution presents simulations of fracture in concrete beams loaded in three-point
bending via discrete model. The size and distribution of discrete units reflect the concrete heterogene-
ity and together with properties of their contacts provide an internal length scale. Due to a random
placement of the discrete units, the model mimics natural randomness of material structure arising
from its random heterogeneity. A second random component of the model considered is additional
fluctuation of material parameters at contacts between the units. This randomness reflects variations
in material properties due to mixing, drying, etc. and it is considered in a form of random field with
its own internal length scale provided in a form of autocorrelation length.

By changing the ratios between the autocorrelation length and the internal length arising from het-
erogeneities, one can observe strong effects of this ratio on structural strength when cracks propagate
from smooth surface. For deeply notched beams, the spatial strength fluctuations only affects the
variance of the peak load and no significant effect observed on its mean value. The described depen-
dency of structural strength on the ratio between the two characteristic lengths is demonstrated and
elucidated.

1 INTRODUCTION

Concrete is recognized as highly heteroge-
neous material. The macroscopic material re-
sponse and fracture behavior is influenced by
the internal structure which can be reflected in
the model by some internal length parameter.
This is usually the case of continuum models,
such as the Crack Band Model [1] or Nonlo-
cal model [2]. A convenient way is to use
discrete meso-scale models that contain infor-
mation about the concrete internal structure di-
rectly. There are several types of such mod-
els developed for different purposes [3, 4, 5, 6].
The main advantages of the discrete meso-scale
models are the natural discrete representation
of cracks, the ability of capturing transition

from distributed to localized fracture, automatic
cracking in directions perpendicular to maxi-
mum principal stress, simpler formulation of
constitutive relation using vectors instead of
tensors, etc. This contribution utilizes a sim-
plified version [7] of the lattice discrete particle
model developed in [8, 9, 10].

Despite the rich information about material
mesostructure, the meso-scale models are in-
complete unless they include also spatial vari-
ability in material properties that arise during
the production process (mixing, drying, etc.)
and service life. These spatial fluctuations are
usually modeled via random fields [11, 12, 13].
Even though there are several possible sources
of random fluctuations, it is considered here that
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all of them can be approximately described by
a single random field. This random field has
its own characteristic length scale provided in
a form of correlation length [14, 15]. Incorpora-
tion of the random fluctuations into the present
discrete model is closely described in [16, 17].

The interplay between the characteristic
length of the discrete system (called here deter-
ministic internal length, ld) and the random field
(autocorrelation length, lρ), is studied in the
present contribution. Simulations of three-point
bending beams, with and without a notch, are
calculated using the discrete model enhanced
with random fields (referred to as the proba-
bilistic discrete model from here on). The simu-
lations are performed repeatedly with randomly
generated aggregate structure and with differ-
ent realizations of the random field. A strong
dependence of the mean value and standard de-
viation of the peak load on correlation length of
the random field is reported.

2 PROBABILISTIC DISCRETE MODEL
The model at hand has two fundamental

components. The first one is the accurate me-
chanics that provides stress redistribution, tran-
sition from distributed to localized crack and all
other features necessary to capture properly the
phenomena involved in concrete fracture. This
includes also development and propagation of
the Fracture Process Zone (FPZ), that is a stan-
dard name for a region around a crack tip that
encloses material with nonlinear behavior. The
model is a simplified version of [9], the full for-
mulation accounts also e.g. for confinement.
Our model is static, the solution proceeds in
steps, iteration are performed to achieve static
equilibrium at the end of each step. The lo-
cation and size of the discrete units are ran-
domly generated by computer based on sieve
curve and on the total aggregate volume. The
discrete units are ideally rigid; there is a consti-
tutive relationship defined on contacts between
them in terms of one normal and two tangen-
tial displacement jumps. The forces resulting
from constitutive relationship are all dependent
on a single damage parameter calculated from

relatively complex set of equations (see [9]) that
are based on several material parameters among
which the most important are the strengths in
tension and shear, ft and fs, and fracture ener-
gies in tension and shear, Gt and Gs.

The described model itself provides random
response due to the randomness in the positions
and sizes of the discrete units; because of the
random meso-structure. However, we will refer
the model without random fluctuations of ma-
terial parameters to as the deterministic model
from now on, and the mean value and standard
deviation of the peak load provided by deter-
ministic model will be denoted µd and δd.

The second fundamental component is ran-
domization of material parameters. The deter-
ministic model combined with the randomiza-
tion will be called the probabilistic model, and
the corresponding mean and standard deviation
of the peak load will be denoted µp and δp, re-
spectively.

In the probabilistic model, the material pa-
rameters governing fracture behavior (ft, fs, Gt

and Gs) were randomized using random field.
The correlation structure of the field was as-
sumed to obey square exponential function and
probabilistic distribution H at any location in-
side the field was described by Weibull-Gauss
juncture distribution function [18, 19] with the
mean value µh and standard deviation δh. De-
tailed description of the probabilistic model can
be found in [17].

Two alternatives of varying the fracture ener-
gies were explored here. In the first one, all of
the four random variables were considered lin-
early positively dependent. Only one random
field (H , with the mean value µh = 1) there-
fore needs to be generated and random fields for
fracture parameters are simply linear multiplies
of H . Denoting the mean values of the four ran-
dom variables ft, fs, Gt and Gs, one can obtain
random field for these variables simply by

HX = XH (1)

where X stands for chosen random parameter.
A feature noticeable with this alternative is that
the Irwin characteristic length of the material is
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random. Such a length can be estimated at po-
sition x, that has a random filed value h(x), by

ld(x) =
EGt(x)

[ft(x)]
2 =

EGth(x)[
fth(x)

]2 =
ld
h(x)

(2)
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Figure 1: Constitutive law in monotonic normal loading
in tension for both described alternatives.

2.1 Randomization with a constant charac-
teristic length

Even though the alternative with variable
characteristic length might be applied in gen-
eral, for our purpose the second alternative
where characteristic length is kept constant is
preferred. Tensile and shear strengths are kept
fluctuating according to Eq. 1, and the fracture
energies in tension and shear follow

HX = X [H ]2 (3)

As a result, Eq 2 is transformed into

ld(x) =
EGt(x)

[ft(x)]
2 =

EGth(x)
2[

fth(x)
]2 = ld (4)

Due to the squared value of random field in
Eq. 3, the fracture energies are, on average,

higher by a factor µh2 = δ2
h + µ2

h = δ2
h + 1.

For purpose of this paper, it was assumed that
δh = 0.14. Thus, fracture energies in alternative
II are higher on average by 1.96% compared to
the deterministic model or alternative I – a fact
that we ignore.

Both alternatives are depicted in Fig. 1,
where the response of a single contact loaded
monotonically in normal direction is plotted for
different values of h. In alternative I, the de-
teministic internal length decreases with an in-
crease in h and the contact becomes more brit-
tle.

Imagine application of a constant value of h
on the whole structure. Such a situation actu-
ally corresponds to one extreme case considered
later, the case of infinitely large autocorrelation
length lρ → ∞. In such a case, alternative
II leads simply to multiplication of structural
strength by h because the mechanics is indepen-
dent of the chosen constant h. On contrary, al-
ternative I produces nonlinear dependence on h
as the redistribution of stress in the mechanical
system is affected by h. This is demonstrated
in Fig. 2 including linear approximation line for
µd = 26.5 kN. Alternative II is selected for fur-
ther analyses as it enables easier interpretation
of the results with randomization.
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Figure 2: Peak load measured on several models with dif-
ferent meso-structure and with constant h value for all
contacts, two studied alternatives.

Since alternative II produces results that are
just multiplied by a random factor h that is con-
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stant over the whole structure, one can sim-
ply calculate what should theoretically be the
mean and the standard deviation of the peak
load of the probabilistic model in case of in-
finitely large correlation length. The product of
two independent processes leads to simple for-
mulas for the mean and standard deviation of
the peak loads

µp,t = µdµh = µd (5)

δp,t =
√
δ2

dδ
2
h + µ2

dδ
2
h + δ2

dµ
2
h = (6)

=
√
δ2

dδ
2
h + µ2

dδ
2
h + δ2

d

2.2 Material parameters
Material parameters of the mechanical

model and its probabilistic extension are partly
identified and partly fabricated. The identifica-
tion was based on experimental campaign de-
scribed in [20] and it is briefly explained in [21].
The same material parameters were used also in
this study including the 10 mm maximal diam-
eter of grains. The width of FPZ should be, in
such a case, 20-30 mm.

The major focus is now on the effect of au-
tocorrelation length, which was varied in the
range 0–∞. When∞, all of the contacts share
an identical random value of h; when 0, all con-
tacts have random and independent values of
h; when in between, a sample of random field
with corresponding correlation length is gener-
ated and applied to h.

0 1

end

peak

damage

Figure 3: Distribution of damage at contacts of one real-
ization of the probabilistic model at the peak load (top)
and at the termination of the simulation (bottom) of un-
notched beam.

h = independent random values

h = random field values

h = random constant value

h = constant value

Figure 4: Values of the h(x) parameter in the determin-
istic model (top) and the probabilistic models with cor-
relation lengths lρ ∈ {∞, 25, 0}mm (a 2D illustration).

3 STATISTICAL CHARACTERISTICS
OF THE PEAK LOAD

The simulated specimen was a concrete
beam loaded in three-point bending. The di-
mensions of the specimen were: depth 150 mm,
length 720 mm, span 600 mm and thickness
40 mm. Two configurations were considered
- without a notch and with a central notch of
length 75 mm. Only the central part of the beam
was represented by the discrete model, the sur-
rounding material was modeled by linear elastic
finite elements.

The peak load of such a beam was calculated
using both the deterministic and probabilistics
model with several autocorrelation lengths. To
estimate the mean value and standard devia-
tion of the peak load, 100 realizations of every
model variant was performed. The realizations
differed by random meso-level arrangement and
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Figure 5: Mean value and standard deviation of peak load computed on unnotched (left) and notched (right) beams using
deterministic model (µd, δd) and probabilistic model ((µd, δd)). Theoretical standard deviation for lρ →∞ according to
Eq. 6 is denoted δp,t.

random field realization if included. The distri-
bution of damage in one realization of the prob-
abilistic model with lρ = 25mm is shown in
Fig. 3. Three realizations of the random field
in selected variants of the model are sketched in
Fig. 4.

The resulting mean values and standard devi-
ations of the peak loads are presented in Fig. 5.
On the right hand side, the results of unnotched
configuration are shown. The mean values of
probabilistic and deterministic models are al-
most identical irrespectively of the correlation
length. This is due to the strong stress concen-
tration at the notch tip; the crack always starts
from that location. And even in randomized
model, the region around the notch tip keeps
the mean random value µh = 1. However,
the standard deviation exhibits a strong depen-
dence. For large correlation length, it obeys
assumption of independent sources of variance
from (i) the random field scaling and, (ii) the
randomness due to meso-structure (as derived
in Eq. 6). As the correlation length lρ decreases,
it decreases towards δd. The decrease in stan-
dard deviation is caused by a finite size of FPZ.
Failure of the beam is always triggered by dam-
aging many contacts within an FPZ. Simultane-

ous failure of many contacts leads to averaging
of contact strengths within FPZ. For very short
autocorrelation length, the the effect of spatial
variability within FPZ gets averaged out and the
peak loads are almost identical to the determin-
istic simulations.

The same averaging effect is responsible for
the decrease in standard deviation in the case
of unnotched beam, see Fig. 5 left hand side.
Contrary to presence of strong stress concentra-
tion that dictates crack location, in this case the
crack may initiate anywhere along the bottom
surface. The peak load is reached, again, only
after damaging a certain material volume, FPZ.
As the correlation length decreases, the fluc-
tuations are more frequent and the lower FPZ
strength may appear. However, when the corre-
lation length drops below the FPZ size, the av-
eraging effect is responsible for increase of its
the average FPZ strength.

4 SIZE AND SHAPE OF THE FPZ
The results from numerical simulations can

also provide some information about the FPZ
in terms of its size and its shape. These two
characteristics could be investigated by display-
ing the energy dissipation density. The particu-
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Figure 6: Relative energy dissipation density released within the solution step in which the peak load was reached;
lρ = 25mm. Left: unnotched beam, right: notched beam.

lar interest is in the FPZ at the peak load, since
it can identify material volume responsible for
magnitude of the peak load.

The energy dissipated at the contacts within
the computational step right prior to the peak
load was normalized to provide unit sum. Then,
this data from all 100 models was summed up
into the bins of size thickness×3×3 mm orga-
nized in a regular grid. The bin into which the
dissipating contact contributed was determined
based on the location of the contact midpoint.
In case of unnotched beams, the location of the
final crack is varying. The macrocrack location
was estimated as a centroid of the energy re-
leased in the final simulation step in the bound-
ary layer. An appropriate bin was then found
based on relative location of the dissipating con-
tact with respect to the macrocrack location.

Fig.6 shows 2D plot of the relative energy
dissipation density in logarithmic scale for lρ =
25mm. The red color marks areas with the
highest value (set to 100% in both beams), the
dark blue color shows bins with less than 1% of
the energy dissipation density compared to the
maximum.

The figures are comparable under the as-
sumption that when the structure reaches the
peak load, the maximal rate of energy dissipa-
tion density is the same irrespectively of the size
and boundary conditions. Assuming this state-
ment valid, we can compare now the FPZs. Tak-

ing the contour at the level 5% as the bound-
ary of FPZ, one can see that both the width
and depth of the FPZ are slightly larger for un-
notched beam. Its width and depth is approxi-
mately 30 mm (20 mm) and 50 mm (35 mm) for
unnotched (notched) beam, respectively.

5 EXTREMES OF MOVING AVERAGES
OF 1D RANDOM FIELDS

In this section, an analogy between the prob-
abilistic simulations of unnotched beams and
properties of moving averages of random fields
is elucidated. As already mentioned above,
the average peak load for infinitely large au-
tocorrelation length is equal to the average re-
sults obtained with the deterministic model. On
the other hand, results obtained with a “white
noise”, i.e. with autocorrelation length be-
low the size of aggregates also seem to tend,
on average, to the deterministic results. How-
ever, there is a certain range of autocorrela-
tion lengths of the local strength parameters that
lead to a drop in the average peak load.

charl charl

Figure 8: Idealization of the beam by a chain of sizeable
potential fracture process zones.
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Figure 7: Left: Illustration of a moving average of a realization of 1D process of local tensile strength. Right: De-
pendence of the extreme (minimum) of the random field as a function of the relative chain length (lρ/L) and averaging
support (lchar/L).

Intuitively, one can explain this feature by
the argument that when the size of the locally
weak region (size of about one autocorrelation
length) reaches approximately the size of FPZ,
the peak load will reach its minimum, on aver-
age. The reason is that the weak FPZ that must
develop to reach the peak load, and it can select
the weakest spot along the bottom surface of the
beam. This feature is depicted in Fig. 8.

In order to capture the essence of the feature
and to quantify how deep the drop in the aver-
age peak load is, a simple model studied in [23]
might suffice. Imagine a 1D structure (a chain)
loaded in uniaxial tension. The chain has a spa-
tially varying local strength described by a ran-
dom field (a realization of such a process is the
black line in Fig. 7 left). The chain fails only
after a certain amount of material, mimicking
the FPZ, fails. The extent of the FPZ is repre-
sented by its width which translates into length
along the chain denoted as lchar (see the short
red line in Fig. 7 left). The length lchar rep-
resents the material heterogeneity in the same
sense and length ld used above for the discrete
model. Assume now that the local strength of
the chain is a 1D process and it serves as a bar-
rier to a stress field that increases from below.
Since the tensile force is equal along the chain,
the stress is a constant function. When the stress
reaches the minimum of the local strength along
the bar (a black dashed line in Fig. 7 left), the

ability to redistribute stress to its surrounding
can be mimicked by averaging the local strength
along a region (support) lchar. The simplest way
to perform a local average is to use a rectangular
(constant) weight function with a support lchar.
To find the strength of such a chain with redis-
tribution, one has to seek the lowest point along
the chain after performing the moving average.
The result of this moving averaging is the red
line in Fig. 7 left. The small arrow in the figure
marks the stress increase from the first crack-
ing to the peak load. This increase is available
thanks to local averaging. When the stress level
reaches the short red dashed line, the minimum
of a moving average is attained.

Therefore, to describe a strength of such
a structure with redistribution, one can study the
purely mathematical problem of distribution of
a minimum of a moving average of the parent
process that describes the local strength. When
the chain length is fixed (e.g. a unit length
L = 1), the problem features interplay of two
lengths: the autocorrelation length, lρ and the
averaging support, lchar. Strictly speaking, this
setting is relevant to a problem of uniaxial ten-
sion and not the problem of three-point bending
where the locally averaged tensile stress at the
bottom of the bar is approximately linear. How-
ever, the shape of the dependence of the average
and standard deviation of the peak load on the
autocorrelation length is qualitatively obtained,
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see Fig. 7 right and compare it with Fig. 5 left.
Fig. 7 right is constructed for Weibull ran-

dom strength field with a unit standard devia-
tion. It studies the dependence of bar strength
on lρ with several different averaging lengths,
lchar. When lchar → 0, the problem reduces
to the problem of extremes of Weibullian ran-
dom fields studied previously in [24, 25]. When
lchar → ∞, the samples of random fields
are random constant functions and the averag-
ing does not modify the samples. However,
a nonzero averaging length lchar modifies the
sample paths and it has been found [23] that the
field paths represent, approximately, a different
random field with an effective autocorrelation
length leff(lchar, lρ) = lρ(lchar/l

? + l?/(lchar +
l?)), in which the cross-over correlation length
l? ≈ 1.69lρ. The new process has also a dif-
ferent standard deviation which can be approxi-
mately transformed into effective Weibull mod-
ulus: meff(m, lchar, lρ) = m(lchar/l

?+l?/(lchar+
l?))1/2. Now that the effective autocorrela-
tion length and scatter is known, the minima
have the mean value µp,t = (leff/(leff + l) +
1/leff)

−1.0/(0.9meff). This formula is used to plot
the dash-dot lines in Fig. 7 right. More details
on this theory can be found in [23].

6 CONCLUSIONS
Probabilistic discrete meso-scale model was

employed to simulate fracture of beams with
and without notch. The effect of ratio between
the autocorrelation length of the random field
determining fluctuations of material parame-
ters and the internal length of material arising
from its meso-structure was studied. The results
show the interplay between these two character-
istic lengths.

In notched simulations, the average peak
load is found to be independent of the corre-
lation length. The reason for such insensitiv-
ity is that the crack is forced to propagate from
one specific location (notch tip). However, the
standard deviation decreases as the correlation
length decreases due to averaging of the fluctu-
ations within the fracture process zone.

In unnotched beams, the standard deviation

follows the same trend. The mean value of
peak load in models with both, very low and
very high correlation lengths of random field,
is approximately equal to the one obtained with
models without random field. However, there is
a certain range of correlation lengths for which
the mean value of the peak load exhibits a clear
downtrend by about 10%. The minimum of
the mean value occurs when the correlation
length equals approximately the internal mate-
rial length. Such a correlation length enables
the structure to sample the position of fracture
process zone inside the weakest spot that has the
size of the characteristic length. Decrease be-
low such a correlation length leads to more av-
eraging within the fracture process zone which
homogenizes the response. Increase in corre-
lation length leads to smoothing of the local
strength and prohibits the weakest spots to ap-
pear.

Generally, for smooth stress fields (un-
notched specimens), the main features obtained
using the presented probabilistic discrete model
can essentially be captured by the behavior of
moving averages of random fields. Local av-
eraging mimics the stress redistribution within
the fracture process zone and this averaging in-
teracts with the autocorrelation length of the
strength random field.

Based on the simulation results, comparison
of the FPZ size at the peak load was done for
the notched and unnotched beam geometries. It
was found that the FPZ is slightly wider and
deeper in beams without a notch. The FPZ
width is in agreement with generally accepted
assumption of approximately 3 maximum ag-
gregate diameters.
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