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Abstract. At the macroscopic scale, concrete can be approximated as statistically homogeneous.
Nevertheless, its macroscopic behavior shows quasi-brittleness, strain softening, and size effects ev-
idencing a strong influence of material heterogeneity. A model naturally accounting for material
heterogeneity is the Lattice Discrete Particle Model (LDPM). LDPM replaces the actual concrete
mesostructure by an assemblage of discrete particles interacting through nonlinear and fracturing lat-
tice struts. Each particle represents one coarse aggregate piece. Since the initial development, LDPM
has shown superior material modeling capabilities. In this research, LDPM is used to simulate the
flexural failure of three groups of over reinforced concrete beams. The groups represent 1D, 2D and
3D geometric similarities. Geometry is generated based on concrete mix design. Then calibration was
only guided by the experimentally provided compressive strength. In order to reduce the redundancy
of the calibration process, the fracture properties of concrete were estimated using relevant literature.
Finally, the rebar assembly was connected to the LDPM mesh using penalty type constraints and the
rebars were modeled using 1D beam elements. Numerical results show excellent agreement with
experimental data and clear capability of capturing size effects.

1 INTRODUCTION

There is no doubt that we live in the high
rise buildings era. Every day, higher altitudes
are sought. From the +850 m Burj Khalifa in
Dubai, UAE, to the next world record com-
ing +1000 m Kingdom Tower in Saudi Ara-
bia, we have built structures so high. Interest-
ingly, these structures are not steel dominated
as the past century trends. Thanks to the con-
crete manufacturing and construction technolo-

gies, concrete was pumped to +600 m in Burj
Khalifa. In addition, the world urbanization has
put even more demand on such type of build-
ings, calling for the Mega Cities type of high
rise buildings. For such structures to withstand
the mighty forces of both earthquakes and wind
loads, they ought to have lateral supporting sys-
tems that consist of heavily reinforced mem-
bers with reinforcements in both sides. This
demand leads in many cases to the violation
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of the preferable under-reinforced design con-
sideration. With concrete being overstressed in
compression and bending, a well experimen-
tally known behavior is brought to considera-
tion which is the size effect (See for example
the research by [1–4]), which shows that the
structural member strength reduces with the in-
crease of its size for a multitude of different
tests. The explanation of this phenomenon can
be related to statistical size effect [5], energetic
size effect [6], or both. The material strength
randomness as described by statistical distribu-
tions like the Weibull distribution explains the
statistical type while, for the energetic one, the
reason is that the rate of energy release into an
advancing crack tip scales with structure size,
while the ability of a unit area of that advancing
crack tip to dissipate energy is approximately
independent of the structure size.

Specifically for over-reinforced beams, a
limited effort was pursued. Earlier studies have
analyzed over-reinforced concrete beams with
limited size change and fracture [7, 8]. A larger
size range with one, two and three dimensional
similarities was introduced by [3]. Additional
work on concrete size effect in compression has
been pursued by several researchers [9–11] that
showed different degrees of size effect.

From a modeling point of view, the main
challenge in capturing size effect in compres-
sion is related to the multiple cracking that takes
place in the over stressed concrete zone be-
fore failure. The lattice Discrete Particle Model
(LDPM) [12] used in this study, can replicate
this realistically by reproducing internal aggre-
gate to aggregate strut and tie behavior while
almost all continuum based formulations rep-
resent compressive damage by fictitious com-
pression softening. LDPM not only success-
fully captures such complicated cracking, it also
replicates the different theoretical stages of con-
crete failure and shows realistic modes of fail-
ure both quantitatively and qualitatively.

2 MODELING OF RC BEAMS
To correctly capture size effect while repli-

cating realistic cracking in the post peak, the

Lattice Discrete Particle Model (LDPM) has
been utilized to represent concrete behavior. As
the beams under consideration were all over
reinforced, the rebar model used was elastic-
perfectly plastic. Finally, the bond between re-
bars and concrete was assumed to be perfect and
thus, a penalty algorithm has been used to con-
nect the rebar nodes to the concrete nodes. The
following subsections describe each of the ma-
terial mechanical models used.

2.1 The Lattice Discrete Particle Model
(LDPM)

The Lattice Discrete Particle Model (LDPM)
[12,13] is a meso-scale discrete model that sim-
ulates the mechanical interaction of coarse ag-
gregate pieces embedded in a cementitious ma-
trix (mortar). The geometrical representation of
concrete mesostructure is constructed through
the following steps. 1) The coarse aggregate
pieces, whose shapes are assumed to be spher-
ical, are introduced into the concrete volume
by a try-and-reject random procedure. 2) Zero-
radius aggregate pieces (nodes) are randomly
distributed over the external surfaces to facili-
tate the application of boundary conditions. 3)
A three-dimensional domain tessellation, based
on the Delaunay tetrahedralization of the gener-
ated aggregate centers, creates a system of poly-
hedral cells (see Fig. 1) interacting through tri-
angular facets and a lattice system composed by
the line segments connecting the particle cen-
ters.

Figure 1: LDPM polyhedral cell, facet vectorial stresses
and strains and the lattice system

In LDPM, rigid body kinematics is used to
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describe the deformation of the lattice/particle
system and the displacement jump, JuCK, at the
centroid of each facet is used to define measures
of strain as

eN =
nTJuCK

`
; eL =

lTJuCK
`

; eM =
mTJuCK

`
(1)

where ` = interparticle distance; and n, l, and
m, are unit vectors defining a local system of
reference attached to each facet. It was recently
demonstrated that the strain definitions in Eq. 1
correspond to the projection into the local sys-
tem of references of the strain tensor typical of
continuum mechanics [14–16]

Next, a vectorial constitutive law governing
the behavior of the material is imposed at the
centroid of each facet. In the elastic regime, the
normal and shear stresses are proportional to the
corresponding strains: tN = ENe

∗
N = EN(eN−

e0N); tM = ET e
∗
M = ET (eM − e0M); tL =

ET e
∗
L = ET (eL − e0L), where EN = E0, ET =

αE0, E0 = effective normal modulus, and α =
shear-normal coupling parameter; and e0N , e0M ,
e0L are mesoscale eigenstrains that might arise
from a variety of phenomena such as, but not
limited to, thermal expansion, shrinkage, and
ASR expansion.

For stresses and strains beyond the elastic
limit, LDPM mesoscale nonlinear phenomena
are characterized by three mechanisms as de-
scribed below.

Fracture and cohesion due to tension and
tension-shear. For tensile loading (e∗N > 0),
the fracturing behavior is formulated through an
effective strain, e =

√
e∗2N + α(e∗2M + e∗2L ), and

stress, t =
√
t2N + (tM + tL)2/α, which define

the normal and shear stresses as tN = e∗N(t/e);
tM = αe∗M(t/e); tL = αe∗L(t/e). The ef-
fective stress t is incrementally elastic
(ṫ = E0ė) and must satisfy the inequal-
ity 0 ≤ t ≤ σbt(e, ω) where σbt =
σ0(ω) exp [−H0(ω)〈e− e0(ω)〉/σ0(ω)], 〈x〉 =
max{x, 0}, and tan(ω) = e∗N/

√
αe∗T =

tN
√
α/tT , and e∗T =

√
e∗2M + e∗2L . The post

peak softening modulus is defined as H0(ω) =

Ht(2ω/π)nt , where Ht is the softening mod-
ulus in pure tension (ω = π/2) expressed as
Ht = 2E0/ (lt/le − 1); lt = 2E0Gt/σ

2
t ; le is

the length of the tetrahedron edge; and Gt is
the mesoscale fracture energy. LDPM provides
a smooth transition between pure tension and
pure shear (ω = 0) with parabolic variation
for strength given by σ0(ω) = σtr

2
st

(
− sin(ω)

+
√

sin2(ω) + 4α cos2(ω)/r2st

)
/ [2α cos2(ω)],

where rst = σs/σt is the ratio of shear strength
to tensile strength.

Compaction and pore collapse from com-
pression. Normal stresses for compressive
loading (e∗N < 0) are computed through the in-
equality −σbc(eD, eV ) ≤ tN ≤ 0, where σbc
is a strain-dependent boundary function of the
volumetric strain, eV , and the deviatoric strain,
eD = eN − eV . The volumetric strain is com-
puted by the volume variation of the Delau-
nay tetrahedra as eV = ∆V/3V0 and is as-
sumed to be constant for all facets belonging to
a given tetrahedron. Beyond the elastic limit,
−σbc models pore collapse as a linear evolu-
tion of stress for increasing volumetric strain
with stiffness Hc for −eV ≤ ec1 = κc0ec0:
σbc = σc0 + 〈−eV − ec0〉Hc(rDV ); Hc(rDV ) =
Hc0/(1+κc2 〈rDV − κc1〉); σc0 is the mesoscale
compressive yield stress; rDV = eD/eV and
κc1, κc2 are material parameters. Compaction
and rehardening occur beyond pore collapse
(−eV ≥ ec1). In this case one has σbc =
σc1(rDV ) exp [(−eV − ec1)Hc(rDV )/σc1(rDV )]
and σc1(rDV ) = σc0 + (ec1 − ec0)Hc(rDV ).

Friction due to compression-shear. The in-
cremental shear stresses are computed as ṫM =
ET (ė∗M − ė∗pM) and ṫL = ET (ė∗L − ė

∗p
L ), where

ė∗pM = λ̇∂ϕ/∂tM , ė∗pL = λ̇∂ϕ/∂tL, and λ is the
plastic multiplier with loading-unloading con-
ditions ϕλ̇ ≤ 0 and λ̇ ≥ 0. The plastic po-
tential is defined as ϕ =

√
t2M + t2L − σbs(tN),

where the nonlinear frictional law for the shear
strength is assumed to be σbs = σs + (µ0 −
µ∞)σN0[1− exp(tN/σN0)]− µ∞tN ; σN0 is the
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transitional normal stress; µ0 and µ∞ are the
initial and final internal friction coefficients.

Finally, the governing equations of the
LDPM framework are completed through the
equilibrium equations of each individual parti-
cle.

LDPM has been used successfully to simu-
late concrete behavior under a large variety of
loading conditions [12, 13]. Furthermore it can
be properly formulated to account for fiber rein-
forcement [17, 18] and it was recently extended
to simulate the ballistic behavior of ultra-high
performance concrete (UHPC) [19]. In addi-
tion, LDPM was successfully used in structural
element scale analysis using multiscale meth-
ods [20–22].

2.2 Rebar Concrete interaction Model
The model presented here represents con-

crete using the Lattice Discrete Particle Model
(LDPM) and steel rebars using 1D beam fi-
nite elements. First, a review of the kine-
matic assumptions on the motion of concrete
and steel reinforcement is presented, then, kine-
matic conditions are imposed to constrain their
relative motion and interactive forces between
the two are derived.

2.3 Kinematic description
Consider a body made of concrete material

occupying a volume V in a three dimensional
space. Each point inside the volume V can be
identified by its cartesian coordinates x. The
motion of point x can be described by veloc-
ity and displacement time histories, respectively
v(x, t) and u(x, t), where t is the time parame-
ter. In the LDPM framework, the motion of all
material points inside V can be described in two
different ways. On one hand, one can relate the
motion of a material point to the deformations
of the tetrahedral LDPM elements that contains
it. At time 0, these tetrahedral elements fill the
entire volume V and each material point is ei-
ther inside an element or may be shared with
other elements if it is on a tetrahedral surface.
Tetrahedral elements deform linearly according
to the motion of the vertex particles. Thus, the

motion of a material point x can be described
by the relationship

u(x, t) =
4∑

i=1

Ni(ξ)ui(t) (2)

where ui(t) are the displacement histories of the
four vertex particles defining the element that
contains point x, and ξ are the isoparametric
coordinates of point x. This description works
satisfactorily as long as displacements are small
and concrete has not cracked. When, concrete is
highly fragmented and big cracks develop, the
linear deformation pattern within a tetrahedral
element is no longer meaningful. A more gen-
eral description for the material point motion is
to consider the cells resulting from the Voronoi
tessellation (see fig. 1). Each cell is associated
to the discrete particle it contains and is limited
by triangular facets over which concrete consti-
tutive equations are imposed. In the initial un-
stressed configuration, all LDPM cells fill the
entire volume V . Again, each concrete mate-
rial point is either inside a cell or may be shared
with other cells if it is on the external surface of
the cell. The motion of a point x inside a cell
can be expressed in terms of velocities as

v(x, t) = vP (t) + ωP (t)× (x− xP ) (3)

where xP is the position of the discrete particle
at the center of the cell, vP (t) and ωP (t) are
its velocity and rotation rate vectors. This con-
dition implies that all points inside a cell move
rigidly with the cell. While this description may
not account for the small deformations that oc-
cur in the elasto-plastic range it does a better
job in describing the formation of concrete frag-
ments in the post-failure regime and tracking
their subsequent motion.

The motion of all material points inside re-
bars can be described as functions of the ve-
locity and rotation rates of the points along the
centerline. The velocity history on an arbitrary
point xr inside the rebar can be expressed as

v(xr, t) = v(xR, t)+ω(xR, t)×(xr−xR) (4)
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where xR is the projection of xr on the axis of
the rebar, and v(xR, t) and ω(xR, t) are the ve-
locity and rotation rate histories of xR. The dis-
placement history is obtained by integrating the
velocity in time

u(xr, t) =

∫ t

0

v(xr, τ) dτ (5)

For each material point inside the rebar or
on its interface, there is a corresponding mate-
rial point inside the concrete. The relative dis-
placement u and relative velocity v functions
are defined as:

u(x, t) = uc(x, t)− ur(x, t),

v(x, t) = vc(x, t)− vr(x, t) (6)

where the subscript c and r denote concrete and
rebar points. Figure 2 shows a schematic repre-
sentation of a rebar (in red) and the surrounding
LDPM tetrahedron (a 2D representative trian-
gle is shown) with the concrete point denoted
by c (blue dot) and the rebar point denoted by r
(red dot) with both axial and radial springs rep-
resenting the constraints. For simplicity, con-
straints are imposed along the axis of the rebar
(neglecting the rebar diameter effect) as will be
described next.

Figure 2: Rebar connected to an LDPM tetrahedron using
springs.

2.4 Line Constraint Formulation
In its simplest form, we postulate that the

internal elastic energy associated to the con-
straints along the rebar axis can be expressed as
a bilinear positive definite symmetric operator
a(u,u) defined as

a(u,u) =
1

2

∫
S

K u · u ds (7)

where K is a stiffness parameter representative
of the local compliance of concrete at the rebar
interface. The total work performed by the in-
teractive forces g (force per unit rebar length) is
expressed by the linear operator b(u) defined as

b(u) =

∫
S

g · u ds (8)

For equilibrium, a(u,u) + b(u) must be 0. For
an arbitrary virtual displacement function δu,
we obtain

δa+ δb = a(δu,u) + a(u, δu) + b(δu)

=

∫
S

K u · δu ds+

∫
S

g · δu ds

=

∫
S

(K u + g) · δu ds (9)

Since the expression above must be valid for
an arbitrary displacement function δu, then we
have

g = −Ku for each x ∈ S (10)

For computational purposes, this expression can
be discretized by subdividing the rebar into fi-
nite segments and by placing control points at
the midpoint of each segment. For a segment of
length ∆s we then have f = K ∆s u(x)

This formulation can be extended to treat
non linear condition by using hypo elastic con-
stitutive equation

ḟ(t) = φ(u)v(t) (11)

3 NUMERICAL SIMULATIONS
In this section, three beam groups from

Ref. [3] are simulated. The groups represent
1D (Group I), 3D (Group II) and 2D (Group
III) similarities. The beam dimensions and
main reinforcement are listed in Table 1 and a
schematic drawing of the beam with supports
and loading platens is shown in Fig.3.
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Figure 3: Beam dimensions, loading and supports

Only, the 28 days compressive strength f ′c
ranging from 17.2 MPa to 20.7 MPa was
reported. The concrete mix proportions by
weight reported were 0.6:1:2.2:1.8 of wa-
ter:cement:sand:gravel with max gravel size of
10 mm and maximum sand size of 7 mm. The
yield strength was 530 MPa for deformed steel
rebars and 220 MPa for plain rebars used as stir-
rups. No data about the steel modulus of elastic-
ity were available so it was assumed to be 200
GPa.

Table 1: Beam Groups Data

Beam L × b × h [mm] a [mm] As [mm2]
Group I
L11×15 4600×110×150 1960 400
L11×30 4600×110×300 1960 800
L11×60 4600×110×600 1900 1600
Group II

S5×7 1150×55×75 480 100
M11×15 2300×110×150 960 400
L22×30 4600×220×300 1900 1600
Group III
S11×15 1150×110×150 460 400
M11×30 2300×110×300 930 800
L11×60 4600×110×600 1900 1600

The following subsections cover the calibra-
tion and simulation of model parameters and the
analysis of results

3.1 Model Calibration
The models used contain two sets of ma-

terial parameters that need to be identified
from experimental data. The first set consists

of the LDPM parameters and the second is
the penalty stiffness parameter used to provide
rebar-concrete interaction.

The calibrated and assumed LDPM parame-
ters for these properties were based on calibrat-
ing just for the average compressive strength
f ′c = 18.95 MPa. With such limited amount
of data, and to reduce the degree of redundancy,
additional characteristics of concrete were esti-
mated based on literature. The meso-scale ten-
sile strength σt was set to be equal to the ACI
318-16 splitting strength fsp = 0.56

√
f ′c =√

18.95 = 2.4378 MPa as was shown in [13].
The Elastic Modulus was computed using the
ACI 318-16 relation as E = 4700

√
f ′c =

4700
√

18.95 = 20, 456 MPa, then the meso-
scale elastic modulus E0 was computed us-
ing [12] assuming the poisson’s ratio to be
0.176, which gives α = 0.25 and E0 =
1.5455E = 31, 620 MPa. The initial frac-
ture energy was estimated using [23] as Gf =
(f ′c/0.051)0.46 (1 + da/11.27)0.22 (w/c)−0.30 =
20.39 N/m where f ′c is in MPa, da is the maxi-
mum aggregate size in mm and w/c is the water
to cement ratio by weight. According to [24],
the meso-scale fracture energy Gt was found
to be equal to the initial fracture energy Gf .
From the definition of Gt in [12], the meso-
scale tensile characteristic length was computed
as lt = 2E0Gt/σ

2
t = 217 mm. Finally, the au-

tomatic parameter identification procedure de-
scribed in [21] was used to identify the shear
strength ratio σs/σt to match the experimental
average f ′c using 3 different geometric realiza-
tions of 300×150 mm cylinders. The identifi-
cation yielded σs/σt = 1.8. These mentioned
parameters are the relevant LDPM parameters
needed to describe the unconfined compressive
and tensile behavior of concrete as was previ-
ously shown in [25]. The remaining parameters
were reasonably assumed based on [13]. With
these parameters, the average of the simulated
concrete compressive strength f ′c,num = 18.89
MPa, which matches the given experimental
data average with an error smaller than 0.3%.

To calibrate the rebar-concrete interaction
penalty stiffness K parameter, one can choose
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a constant value for it or relate it to the prop-
erties of the two connected parts. If the first
option is utilized then the stiffness value must
be large enough to guarantee efficient gluing
of rebar segments to the surrounding concrete
mesh. This will result in the choice of a very
large value that may control the simulation min-
imum time step as the procedure is explicit. The
other option is utilized here where, a segment
of the rebar is to be connected to an LDPM
tetrahedron. To make the simulation minimum
time step independent of the penalty algorithm
used, the stiffness K of each constraint is de-
fined as K = m/∆t2p where m is the minimum
nodal mass connected to it ( the rebar node and
four LDPM tetrahedron nodes) and ∆tp is a se-
lected penalty time step that is always selected
to be slightly larger than the simulation mini-
mum time step. Throughout the following, ∆tp
was always chosen equal to the simulation time
step and then a check is done by comparing part
of the elastic response of the simulated beam
with ∆tp = 2∆t and ∆tp = 0.1∆t to make
sure that the effect on stiffness is negligible.
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N
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Figure 4: Experimental range and Numerical averages of
Load Vs mid-span deflection for beams a) S5×7, and b)
L22×30

3.2 Simulation Results
The results will be discussed based on three

aspects.
First, the load-displacement response. All

simulations followed nicely the experimentally
reported total load Pu Vs mid span deflection δ
as shown for beams S5×7 and L22×30 in Fig.
4 a&b. The two largely different beam sizes
showed three stages of failure, elastic (Stage
I), reduced stiffness due to concrete pre-peak
cracking (Stage II) and strain softening failure
due to concrete post-peak crushing (Stage III).
It must be mentioned here that the small differ-
ences between simulations and largely scattered
experimental clouds are due to the very limited
information about the experimental character-
istics of concrete and the large range of con-
crete strength reported for which, the numerical
simulations are capturing perfectly the different
stages of response.

Second, RC beam load transfer mechanisms
at different stages. As shown in Fig.5, crack
openings and rebar forces are colored from blue
(minimum) to red (maximum). In stage II
(Fig.5 a), distributed tensile cracking starts to
show around stirrups and mid-span with limited
extent over the midspan height due to the large
compression zone above it. With the model ca-
pability to capture 3D interactions of concrete
and the rebars, the stirrups at cracked sections
clearly carried higher forces although based on
theoretical beam analysis using truss analogy,
all stirrups along the shear span should carry
the same force. This shows the advantages of
this model in capturing local features of the
concrete behavior. In stage III (Fig.5 b), the
beam midspan crushes clearly with two inclined
failure lines, which matches exactly the fail-
ure pictures of tested beams in [3]. Finally,
the arch action mechanism is clearly shown in
Fig.5 c during stage II before concrete crushing.
It shows the maximum compressive principal
stresses (in blue) which draw an arch between
the supports and the mid-span showing the in-
terruptions from distributed cracking in the bot-
tom half of the beam.

7
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c) 

a) 

b) 

Figure 5: Experimental range and Numerical averages of Load Vs mid-span deflection for beams a) S5×7, and b) L22×30

Third, size effect capturing. Following the
same procedure used in [3]. Size effect is
represented as a function of a characteristic
length and a nominal strength measure based on
Bažant’s universal size effect law as,

µ = µ0

(
1 +

D

D0

)−1/2
(12)

Where µ0 = Bft, D is the chosen character-
istic length for comparison, ft is the direct ten-
sile strength of concrete, µ is the value of nom-
inal stress corresponding to the ultimate load
at the extreme fiber of the beam and both B
and D0 are two parameters that depepnd on the
structure shape and loading to be identified us-
ing regression analysis.

To start the analysis, all elements of Eq. 12
need to be defined. Beam dimensions are shown
in Fig. 3. The nominal stress is given by
µ = 3Pua/bd

2 where Pu is the total beam peak
load, a is the shear span, b is the beam width
and d is the depth to the centroid of main rein-
forcement. In this paper, the chosen character-
istic length for the three groups was the beam
total depth D. Since no data was given for the
tensile strength of the concrete used, ft was es-
timated based on concrete compressive strength
as ft = 0.35

√
f ′c (in MPa) [26].

Table 2: Beam Groups Data

Group Beam
Pu [KN] µ [MPa]

Exp. Num. Exp. Num.

I

L11.15a 13.05 11.06 46.86 39.72
L11.15b 13.21 10.92 47.45 39.2
L11.15c 10.81 10.86 38.81 39
L11.30a 51.92 39.27 46.62 35.26
L11.30b 48.75 38.33 43.77 34.42
L11.30c 51.62 39.48 46.35 35.45
L11.60a 150.54 143.34 32.76 31.19
L11.60b 168.22 141.21 36.6 30.73
L11.60c 158.47 142.76 34.48 31.06

II

S5.7a 4.9 6.06 34.51 42.64
S5.7b 6.06 6.24 42.67 43.91
S5.7c 5.75 6.04 40.49 42.51

M11.15a 21.66 22.39 38.1 39.38
M11.15b 23.45 22.72 41.24 39.96
M11.15c 23.28 22.62 40.96 39.79
L22.30a 85.39 85.12 37.16 37.04
L22.30b 83.8 86.15 36.47 37.49
L22.30c 83.53 86.26 36.35 37.54

III

S11.15a 62.51 65.57 52.69 55.26
S11.15b 39.08 66.69 32.94 56.21
S11.15c 56.95 64.28 48 54.18
M11.30a 101.73 92.7 43.34 39.49
M11.30b 106.58 91.79 45.41 39.11
M11.30c 97.34 92.59 41.47 39.44
L11.60a 150.54 143.34 32.76 31.19
L11.60b 168.22 141.21 36.6 30.73
L11.60c 158.47 142.76 34.48 31.06
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The raw data used for the analysis are listed
in Table 2 including for each group, the exper-
imental and numerically simulated peak loads
and nominal stresses. To perform the regres-
sion analysis, The size effect law is written in a
straight line equation form as(

ft
µ

)1/2

=
1

D0B2
d+

1

B2

Y = Ad+ C (13)

So, by using regression analysis, one can com-
pute the two constants A and C in Eq. 13 and
then compute back the two size effect law pa-
rameters as D0 = C/A and µ0 = ft/

√
C.

As can be seen from Table 2, the experimen-
tal data had a large scatter in many cases and
it was only limited to 3 beams per each size,
while the scatter in numerical simulations was
much smaller. For this reason, the Robust Re-
gression method was used, which reduces the
effects of outliers using iteratively reweighed
Least-Squares Method [27].

The results from regression are used to com-
pute µ0 and D0 for both experimental and nu-
merical data and are listed in Table 3. Finally,
Fig. 6 shows the size effect curve along with the
two asymptotes of strength criterion (Horizon-
tal line) and Linear Elastic Fracture Mechan-
ics LEFM (Slope of 2:1) with both experimen-
tal and numerical data points for each group.
Again, due to the large scatter in experimental
data, the values of SEL parameters are different
for the experimental vs numerical data for each
group but both show clear size effect.

Table 3: Size Effect Law Parameters

Group
µ0 [MPa] D0 [mm]

Exp. Num. Exp. Num.
I 55.6 43.4 324 501
II 44.1 44.6 540 553
III 80.8 87.7 97 68

More over, the numerical simulations per-
fectly align with the SEL curve in all three
cases. LDPM simulations were able to capture

also the effects of different dimensional simi-
larity on D0 where for 3D Similarity, the results
were on the strength theory side (Group II), for
2D similarity, the results were shifted towards
the LEFM side (Group III) and 1D similarity
was closer to the transitional zone.
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Figure 6: Size Effect Law plots along with strength and
LEFM limits for both experimental and numerically sim-
ulated values of groups a) I, b) II and c) III
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5 CONCLUSIONS
In this paper, the Lattice Discrete Particle

Model (LDPM) was used to simulate flexu-
ral failure of over-reinforced concrete beams
of 8 different sizes in 4 point bending load-
ing. The model was able to capture the behav-
ior both qualitatively by replicating as experi-
mental crack pattern and failure mode, and also
quantitively by replicating the load displace-
ment responses and peak load values. Most
notably, the model was able to capture size ef-
fects in the three different groups with 1D, 2D
and 3D geometric similarities which - to the
knowledge of the authors - is the first time,
a concrete model replicates such size effects
in over-reinforced beams failure. Additionally,
the model was able to capture general aspects
of beam behavior and load transfer mecha-
nisms over different stages of loading including
elastic, pre-peak crack initiation and post-peak
damage and crushing of concrete. It was also
able to show how concrete and steel (both lon-
gitudinal and vertical) reinforcement exchange
forces around cracked areas along the beam.
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