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Abstract:  Considering different scales and phenomena, the models used to describe the cracked 
behavior of concrete cannot be of the same type. The aim of this contribution is to present different 
tools, used at their relevant physical scales as well as their mutual enhancement for a global 
structural approach. Such an issue is greatly emphasized when dealing with cyclic and dynamic 
loadings, involving complex stress paths. A discrete element model (DEM) is presented, 
introducing within an implicit framework, local nonlinear mechanisms such as brittle failure, 
contact, frictional sliding and scale effects can be taken into account. Such a local model will help 
one, through virtual testing procedures to express constitutive laws allowing for a refine description 
at the representative volume element (RVE) level of constitutive relationship based on coupled 
plasticity-damage models. Based on a structural case-study, the relevancy of the full analysis chain 
is presented. 
 

 

1 INTRODUCTION 

Sustainability issues of concrete structures 
are mainly linked to their durability and water 
tightness capabilities. These features are 

evolving along with time due to cracking of 
concrete which is an unavoidable behavior 
regarding the design of such structures. 
Cracking has two main consequences: at the 
microscale, the permeability and diffusion 
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processes directly depend on crack's opening, 
spacing and tortuosity whereas at the 
macroscale, the homogenized degradation of 
the constitutive material leads to stiffness loss, 
modification of the internal forces distribution 
and loss of the load bearing capacities. 
Considering those different scales and 
phenomena, the models used to describe the 
cracked behavior of concrete cannot be of the 
same type. The aim of this contribution is to 
present different tools, used at their relevant 
physical scales as well as their mutual 
enhancement for a global structural approach. 
Such an issue is greatly emphasized when 
dealing with cyclic and dynamic loadings, 
involving complex stress paths. 

A discrete element model (DEM) is 
presented, introducing within an implicit 
framework, local nonlinear mechanisms such 
as brittle failure, contact, frictional sliding and 
scale effects. Such a local model will help one, 
through virtual testing procedures to express 
constitutive laws allowing for a refine 
description at the representative volume 
element (RVE for Finite Element Technique) 
level of constitutive relationship based on 
coupled plasticity-damage models. Original 
developments will be presented accounting for 
regularized crack effects on cyclic behavior of 
brittle materials. Structural computations at the 
large-scale civil engineering structural scales 
are robustly achieved using this model. Based 
on a structural case-study, the relevancy of the 
full analysis chain is presented as conclusions 
of this contribution. 

2 DISCRETE CRACKING AND CYCLIC 
BEHAVIOR 

This section is devoted to the recent 
development performed within the framework 
of discrete element models [1, 2, 3] in order to 
account for physical features such as unilateral 
crack behavior and frictional sliding. The 
numerical implementation is realized through 
implicit algorithms allowing efficient and 
robust virtual tests. 

2.1 Discrete element model formulation: 
cohesive forces 

In this contribution, the combined beam-
particle model – inspired by D’Addetta et al. 
[4] and modified by Delaplace [5] and 
Vassaux et al. [6] is used. The concrete is 
represented through polygonal particles linked 
together by brittle beams and exhibiting 
frictional contact after failure of the beams. 
With this model, it is possible to qualitatively 
reproduce the failure pattern for compressive 
or tensile simulations. 
 

In order to represent the cohesion of the 
material, the particles are joined together 
through Euler-Bernoulli beams linking the 
centroid of the particles. Those particles are 
rigid. Therefore, the cohesive forces must 
reproduce the elastic behavior of the material. 
The beam i − j , linking the particles i and j, 
has four parameters (see on figure 1). Two of 
them, the length ��,�� and the cross section area 
��,�� , are prescribed by the mesh geometry 
and are different for each beam. The two other 
parameters, the young modulus of the beams E 
and the coefficient of inertia � �64	/��,��

� , 
where ��,�� is the moment of inertia, are 
supposed equal for all beams. 
 
 

 
Figure 1: Cohesion between particles 

 
The cohesion forces and moment between 

two connected particles i and j are expressed 
as: 
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���,�� =
��
��
��
� 
�,�� = ���,����,�� ��� − ���. ��,��

�,�� = 12���,����,�� ��� − ���. !�,�� − 6���,����,��� �#� − #��
$%,�� = 6���,����,��� ��� − ���. !�,�� + 4���,����,�� (#� − #�2)

 

 
where ��,�� and !�,�� are the normal and 
tangential vectors of the cross-section of the 
beam i − j . At this point, the discrete model is 
equivalent to a lattice model [7,8]. 

2.2 Frictional contact 

The modelling of concrete failure under 
cyclic or multi-axial loadings requires to 
consider frictional contact interactions 
between particles  to capture mechanisms such 
as crack closure or aggregate interlocking. 
Contact interactions are only introduced when 
two separated particles – i.e. that are not linked 
by a cohesive beam – overlap. The magnitude 
of the contact forces, as well as their direction 
and their point of application, is computed as a 
function of the overlapping areas because 
particles are perfectly rigid bodies. 

First, it is necessary to detect the 
overlapping of two particles. Since particles 
are polygonal, the intersection cannot be 
described analytically as with discs and 
numerical tools are required. Overlap detection 
is a time-consuming process, increasing 
quickly with regard to the number of particles. 
In order to limit its costs, intersection search is 
restricted to close neighbors [9]. The complete 
description of the polygonal intersection is 
computed through an algorithm developed for 
convex polygons [10]. 

The beam theory used for cohesion reveals 
to be very convenient for elastic contact force 
computation between polygonal particles [11, 
4]. A slight modification is made in the normal 
force formula to introduce the overlap area Sr: 

 


��*+,�� = �,-,����,�� ��,�� 
 

where lc is a characteristic length supposed to 
be an average of the equivalent diameter 

(implying an equal surface for a virtual round 
particle) of the particles (.� and .�). 

 1�� = 12 ( 1.� + 1.�) 
 

A Coulomb’s type of friction is considered 
introducing the friction coefficient µ: 

 
1-��,��
= min 5���,����,�� 6���,�� − ��,���. !�,��
− ∆�8,��9 , :;
��*+,��;< 

 

where the moment of inertia is �� = =×?@A=�   

2.3 Energy dissipation and rupture 
threshold 

 
In order to reproduce the post-peak 

behaviour in tension, we introduce a statistical 
distribution of the breaking parameters. Gauss 
and Weibull distributions have been proposed 
and investigated. Morice [12] showed that the 
resulting displacement field at the top of the 
crack is visually the same as long as the 
distributions are identical in terms of mean 
value and standard deviation. However, 
following Van Mier et al. [8] conclusions 
regarding the crack patterns, a Weibull 
distribution has been chosen. The Weibull 
probability density function is: 
 

B(C) = DE 6CE9
FG= HG(IJ)K 

 
with λ the scale factor and k the shape factor of 
the Weibull distribution. We consider that the 
spatial variability is the same for both breaking 
parameters. Consequently the shape factor is 
kept identical for each parameter and only the 
scale factor varies. Moreover, no minimal or 
maximal value has been assigned to the 
breaking parameters contrary to the 
proposition of Van Mier et al. [8]. Thus, the 
number of parameters is minimized. 
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Many formulations of failure criterion can 
already be found in the literature [13] and 
some of them offer an accurate description of 
the complete failure behaviour. Vassaux et al. 
[14] tested several formulations based on 
Rankine or Mohr-Coulomb criterion. They 
observed that the use of extensions and 
rotations instead of axial forces and bending 
moments, as originally proposed by Schlangen 
and Van Mier [4], do not change the results. 
Therefore, a criterion based on L�� , θi and θj is 
chosen to stay in the kinematic framework of 
this beam-particle model. The formulation can 
be seen as a Mohr-Coulomb-type criterion 
controlled with only two parameters, setting 
for each beam the cone vertex position 
L�-,��	and the intersection of its edge with the 
zero-extension plane #�-,��. The resistance in 
rotation increases with the level of contraction 
inside the beam. Such formulation of the 
failure criterion can be seen as an 
homogenization of lower scale mechanisms 
that are not considered in the model, especially 
porosity compaction. 
 

N�� �
L��
L��
�- &

O#� � #�O
#��
�- P 1 

 
The figure 6 allows one to figure out the 

failure threshold representation. 
 

 
 

Figure 2: Mohr-Coulomb failure criterion 

2.4 Identification and validation 

 
Identification procedures concerning the 

element size, elasticity parameters, failure and 
friction can be found in [14] allowing to 
reproduce strong nonlinear behavior under 

usual compressive loadings as demonstrated in 
figure 3 considering different levels of 
adherence between the sample and the 
loadings platens. Experimentally [15], the 
inclination of the localized macroscopic crack 
has been observed to depend on the adherence 
level of the platens. The beam-particle model 
with the modification to apply partially 
restrained boundary conditions allows the 
reproduction of the experimental results: the 
crack pattern slope increases with the friction. 

The shear test proposed by Fenwick and 
Paulay [16] allows testing a concrete specimen 
under pure mode II failure. The small 
specimen (0.45 m long and 0.1 m high) is first 
loaded under uni-axial tension to form a 
localized crack in between two small notches 
at mid-length of the sample. Then the 
specimen is maintained to keep the crack 
opening constant, and shear load is applied. 

 
 

 
 

Figure 3: Influence of the adherence of the loaded 

ends on the cracking patterns in compression. 

 
 
Figure 4: Experimental crack orientation considering 

platen friction [15] 
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The evolution of the shear stress with the 
shear displacement for several crack widths – 
i.e. different confinement levels – is 
experimentally available [17]. The critical 
extension scale factor is re-calibrated in order 
to fit the experimental response for the 
smallest crack-width (cw = 0.00006m). The 
whole parameter set is given in the table 1. 
 

Table 1: Parameters values 

�Q/R0 � E 
(GPa) 

ES@T #S@T k : 

0.002 0.83 46 4.35 
10-4 

3.26 
10-3 

2.8 0.7 

 
 

The model is able to reproduce not only the 
peak-load values but also the pre-peak overall 
slope of the smooth experimental curves (see 
on figure 5). Note that the offsets in the pre-
peak behaviour (horizontal slope), especially 
visible at high confinements, are evidences of 
the ”aggregate interlocking” mechanism. 
Shear stresses transit through the crack 
because of geometrical incompatibilities, until 
particles at the crack interface start to spall off, 
once all their cohesive beams are broken. 
Sliding is then initiated at crack lips until new 
incompatibilities are generated. The model 
would hardly capture such mechanism without 
the use of polygonal particles. 
 

 
Figure 5: Response of the model for Fenwick and 

Paulay shear test 

3 CONTINUOUS MODELLING 

The design of robust and accurate 
constitutive models for quasi-brittle materials 
accounting for cyclic loading effects is an 
essential step in the process of predicting the 

response of civil engineering structures under 
complex loading, and more specifically 
earthquakes. Several modelling techniques 
have been developed at the macroscopic scale 
to depict quasi-brittle materials behavior, 
based on empirical models [18, 19, 20], micro-
mechanical models [21, 22] or 
phenomenological models [23, 24, 25, 26, 27]. 

Toward the completion of the simulation of 
three-dimensional structures made of concrete 
subjected to cyclic loading, phenomenological 
models have inherent advantages. However, 
the constitutive equations complexity increases 
rapidly when trying to capture consequences 
of mechanisms induced under uniaxial cyclic 
loading. Indeed even recently developed 
models are either not robust enough to 
simulate the complete response of structures 
subjected to cyclic loading, or do not 
reproduce accurately phenomena related to 
cracks closure and friction, as outlined by 
results of the ConCrack international 
benchmark. 

The first objective of this contribution 
is to enhance the efficiency of the model 
proposed in [28] to achieve structural 
simulations. A specific attention is paid to 
phenomena observed under cyclic loading. 
Issues encountered with the current model are 
partly induced by a lack of experimental data, 
preventing from establishing a finer 
mechanical description of the material’s 
behaviour. Experimental data on quasi-brittle 
materials Representative Volume Element 
(RVE) subjected to reverse cyclic loading are 
sparse due to control and repeatability issues. 
Therefore the replacement of part of laboratory 
experimentation by virtual testing is 
investigated. A RVE is considered here to be 
approximately of a 0.1 m characteristic length, 
such as the material can be considered 
homogeneous with respect to different phases. 

3.1 Thermodynamic formulation 

The phenomenological macroscopic model 
is formulated using a rather classic 
decomposition of the total stress in the RVE. It 
is considered that the total stress  U can be 
split in two independent parts:  
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U � UV & U1 

 
with the stress in the cracked continuous 
media 	UV, neglecting any interaction between 
the cracks, classically modeled with a damage 
model; and the stress in the cracks when 
closed U1 . Free energies Ψ1 and 
ΨV	respectively associated to the two stress 
tensors are defined, and compose the total free 
energy of the specimen: 
 

Ψ � ΨV &Ψ1 

3.2 Cracking modelling 
Fracture processes are modeled by 

means of the continuum damage theory. The 
simpler the damage variable is kept, the more 
robust the proposed macroscopic model is. 
Therefore, in view of the structural 
applications of the proposed model, an 
isotropic damage model is formulated, 
implying a unique scalar damage variable. The 
free energy associated to the cracked 
continuous media simply writes: 

 

ΨV �
12 (1 − .)X: Z: X + ΨV,[(\) 

 
with D the isotropic damage variable, X the 
second-order total strain tensor, Z the fourth-
order Hooke’s tensor, \ the isotropic 
hardening variable, and ΨV,[ the free energy 
related to damage. The formulation of the non-
associated pseudo-potential of dissipation ]V 
is based on the Mazars failure criterion and 
expressed in terms of thermodynamic 
variables. 
 ]V = _̂ − (^̀ + a) 

 
where Z stands for the thermodynamic force 

associated to z, _̂ the energy rate ̂_ = =��L`Lbc  

which is written as a function of Mazars 
equivalent strain Lbc = d< X >f: < X >f, L` 
the elastic limit strain, and ^̀  the elastic limit 
energy rate written in a similar fashion  
 

^̀ = =��L`L`. 

 
The asymmetry between traction and 

compression loading is only considered 
through its consequence on the peak load and 
the softening behavior of the material, and is 
introduced in the damage variable evolution 
law derived from ΨV,[. This leads to a 
damage evolution law expressed as: 
 

. = 1 − ^̀̂_ HCg h−i`j ( _̂ − ^̀ )k 
 
where i` stands for a parameter controlling 
the softening behavior and j computed as 
follows: 
 

j = 1 + D` 5〈Z: X〉G: 〈Z: X〉G〈Z: X〉: 〈Z: X〉 <= �n
 

 
where D` stands for a parameter measuring the 
influence of the confining pressure, and 
therefore only influences the failure behavior 
when cracks are induced indirectly (e.g. in 
compression). 

3.3 Stiffness recovery 

Cracks mechanical behavior described by 
the stress tensor U1 is first considered 
elastic.	U1	is defined as non-linear function of 
the strain tensor o1, which could be called the 
homogenized contribution of cracks opening 
to the total strain of the RVE. The following 
assumption is made on the evolution of  U1  
with respect to  o1: 
 Up 1 = q(	op 1)Z: op 1 
 

The function ϑ is scalar, in other words, the 
tangent modulus of the cracks stress-strain 
relationship is proportional to the undamaged 
Hooke’s elastic tensor. q represents the part of 
the lost stiffness due to cracking which is 
recovered thanks to cracks closure, and can 
only take values ranging from 0, when cracks 
are completely opened, to 1, when cracks are 
completely closed. Since ϑ evolves according 
to the materials solicitation, it is considered to 
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be dependent on op 1. The elastic part of the free 
energy associated to cracks behavior is then 
written as: 
 

Ψ1,b � r(rq/	o10Z: so1)so1 

 

3.4 Frictional sliding 

The explanation of hysteresis effects 
relying on frictional sliding occurring at the 
cracks surfaces justifies a modeling method 
based on plasticity theory. In consequence, a 
perfect plasticity model along with a Drucker-
Prager criterion is utilized. Because of perfect 
plasticity, the free energy Ψ1 is reduced to an 
elastic part Ψ1,b and introduces a single 
internal variable, the plastic strain accumulated 
through sliding between the cracks o1,Q, 
defined as o1 � o1,Q & o1,b. Considering the 
assumption of isochoric transformation for o1,Q, Ψ1 sums up as:  
 

Ψ1 � r(rq/	o10Z: so1) so1 � 12q/	o10o1,Q: Z: o1,Q 

 
Conditions of continuity of the free energy Ψ1 are not changed when introducing 

frictional sliding. The pseudo-potential of 
dissipation is a Drucker-Prager criterion: 
 

]1 � dt�/U10 & :`�=/U10 
 
where :` stands for a parameter which could 
be assimilated to a friction coefficient. 
Regarding the physical significance of the 
chosen criterion, the t� part refers directly to 
shear occurring in the cracks, while �= rather 
refers to cracks surface normal pressure. In 
consequence, when t� exceeds :`�=, frictional 
sliding is observed. Furthermore, the t� part 
depends on q through U1, therefore depends 
on the proportion of closed cracks. Thus when 
all the cracks are open the  t�	 is negligible and 
as expected no frictional sliding is observed. 
 

4 IDENTIFICATION AND VIRTUAL 
TESTING 

4.1 Unilateral effect 

The formulation of the continuum model 
accounting for cyclic effects has almost fully 
been presented, only remains the function q to 
be defined. Its physical sense has already been 
explained, namely the evolution of the 
proportion of closed cracks with respect to the 
cracks strain tensor o1 . However, q	remains 
to be characterised. This process is undertaken 
using the virtual testing machine 
aforementioned and the discrete simulations of 
the uni-axial cyclic test. 
 
The function q, as the proportion of closed 
cracks, represents the proportion of cracks in 
which forces transit and contribute to the 
stiffness recovery of the specimen. The 
evolution of q  is characterized analyzing the 
evolution of the ratio of number of contacts 
detected and the number of cracks initiated in 
the virtual material sample during the 
simulation of the uni-axial cyclic test. The 
analysis is led for different damage levels, that 
is different maximal cracks strains ǫf  LVuI1 . 
The figure 6 shows the evolution of the 
proportion of closed cracks during unloading 
phases. 
 

 
 

Figure 6: Dependency of the proportion of closed 

cracks to LRvCB  

Independently of ǫf LVuI1  , the proportion of 
closed cracks follows a sigmoidal evolution 
with respect to o1. To determine an analytic 
expression for q  let us consider the 
probabilistic event ”a crack closes”, q  is the 
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distribution function of this event. From the 
results obtained with the microscopic model, it 
appears that this event follows a symmetrical 
distribution centered in o1 � 0, therefore it 
could be assumed that the event ”a crack 
closes” follows a Gaussian distribution of zero 
mean. The maximal cracks strain LVuI1 	affects 
the evolution of the proportion of closed 
cracks. The more damaged the specimen, the 
bigger the variance of the event ”a crack 
closes”. The function q is finally chosen to 
account for this dependency: 
 

q � 1 � 1
1 & HCg x� �`�=�LVuI1 � �=/o10y

 

 
where �`	stands for a parameter controlling a 
reference variance of the event  a cracks 
closes”. 
 

 
 

Figure 7: Dependency of the proportion of closed 

cracks to  LRvCB  evaluated with �` � 6.5 

4.2 Frictional sliding identification 

By means of the microscopic model it is 
possible to estimate the dissipated energy 
specific to frictional sliding, among other 
dissipation mechanisms. Therefore, the 
parameter :` is calibrated in order to observe 
an identical friction specific dissipation in 
concrete RVEs modelled using the 
microscopic model and the macroscopic 
continuum model (i.e a Gauss point). 
The comparison of both models is realized 
during the simulation of a complete cycle of 
uni-axial cyclic test, namely loading, 
unloading, reloading. The amplitude of the 

cycle is arbitrarily chosen to vary from 
LVuI1 � 2.> 10G{ to  LVuI1 � �1.> 10G{ back 
to LVuI1 � 2.> 10G{. Such amplitudes 
correspond to strains where the most 
dissipation through friction, and therefore 
hysteresis effects, is expected due to cracks 
opening and closure.  
Evolutions of the computed energies during 
the aforementioned loading cycle are 
presented in figure 8. Both dissipated energies 
remain null during the loading step, cracks are 
completely opened. Then, an important 
increase is observed during unloading, while 
cracks progressively close. During reloading, 
both energies evolutions stagnate first since 
cracks are completely closed, before opening 
progressively leading to another increase of 
the dissipated energy related to friction. 
 

 
Figure 8: Sensitivity of the friction related dissipated 

energy of the continuum model to the parameter :0 

The parameter :`	is then evaluated at :` � 2.82. It might be added that the friction 
related dissipated energies computed with both 
models present similar trends, which comforts 
the choice of the perfect plastic modelling, 
along with a Drucker-Prager criterion, of the 
cracks frictional sliding mechanism. 

5 VALIDATION AND CASE-STUDY 

5.1 Local responses  

Parameters of the continuum medium part of 
the model are calibrated by equivalence with 
macroscopic reference results provided by the 
virtual testing machine on a square sample of 
0.1 m side length. The tension resistance, the 
tension fracture energy, and the compression 
resistance are respectively utilized to 



Frédéric Ragueneau, Maxime Vassaux, Cécile Oliver-Leblond and Benjamin Richard 

 

 9

calibrate	L`, i` and D`. In the whole section 
results plotted with dashed lines refer to the 
results provided by the virtual testing machine, 
and plain lines refer to results obtained with 
the continuum model. 

 
Figure 9: Cyclic response without cracks behaviour 

 
Figure 10: Cyclic response with elastic cracks 

behaviour 

 
Figure 11: Cyclic response with elasto-plastic cracks 

behaviour 

The uni-axial reverse cyclic test response 
obtained with the macroscopic model is fairly 

close to the reference response obtained with 
the virtual testing machine. First, the addition 
of the non-linear model of cracks behavior to a 
classic model, utilized to describe continuum 
medium’s behavior, allows reproducing the 
progressive stiffness recovery as well as 
residual strains which disappear in 
compression. Second, the addition of the 
plastic model of cracks behavior, enables the 
emergence of the hysteretic behavior, crescent-
shaped hysteresis loops are observed at 
accurate stress levels. Thus, dissipative 
mechanisms are activated for appropriate 
solicitations amplitudes. 

5.1 Structural case-study  

In this section, the constitutive law 
exposed in this paper is used to assess the 
dynamic behavior of a large scale RC structure 
subjected to earthquake loading. This RC 
specimen has been tested by means of shaking 
table tests within the framework of a wide 
research project titled Seismic design and best-
estimate Methods Assessment for Reinforced 
concrete buildings subjected to Torsion and 
non-linear effects (SMART) [29], supported 
by Electricite de France (EDF) and the French 
Alternative Energies and Atomic Energy 
Commission (CEA) under the hospice of the 
International Atomic Energy Agency (IAEA). 
One of the objectives of this project was to 
provide the international earthquake 
engineering community with a set of well-
documented data in order to help validating 
the numerical nonlinear constitutive laws. To 
reach this objective, two experimental 
campaigns have been carried out on the 
AZALEE shaking. 

The RC specimen (figure 12) is a scaled 
model of a simplified half part of a nuclear 
electrical building. It has been prepared to 
reproduce the geometrical, physical and 
dynamical characteristics of a part of the real 
building. Due to the inherent limitations 
related to the laboratory’s capacity, regardless 
of the laboratory in question, some simplifying 
assumptions have to be considered. The model 
had to be geometrically reduced to a scale 
equal to 1/4. 
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The SMART 2013 structure has been 
meshed by means of eight-node solid 
elements. The reinforcing steel bars (both 
longitudinal and stirrups) have been described 
by means of truss elements. In addition, the 
shaking table has also been included in the 
structural model to ensure a satisfactory 
description of the boundary conditions. As this 
way, the seismic loading can be imposed by 
prescribing the displacement time histories at 
anchorage points of the actuators. The meshes 
of anchorage of the actuator. 
 

 
 

Figure 12: Picture of the structural specimen 

 
 

Figure 13: Finite Element mesh of the complete 

dynamic system 

The SMART 2013 structure has been 
meshed by means of eight-node solid 
elements. The reinforcing steel bars (both 
longitudinal and stirrups) have been described 
by means of truss elements. In addition, the 
shaking table has also been included in the 
structural model to ensure a satisfactory 
description of the boundary conditions. As this 
way, the seismic loading can be imposed by 
prescribing the displacement time histories at 
anchorage points of the actuators. The meshes 

of the concrete, steel and shaking table are 
shown in figures 13. 

Three types of signals have been considered 
in the SMART 2013 experimental campaign: 
the design signal (with a PGA equal to 0.2 g), 
the main shock of the Northridge earthquake 
(with a PGA equal to 1.78 g) which took place 
in California, USA, in 1994 and the first 
aftershock related to the same earthquake 
(with a PGA equal to 0.33 g) recorded at the 
same monitoring station as the one chosen for 
the main shock signals. In this study, to choice 
to analyze the design signal has been made. 
Indeed, this loading induces only concrete 
non-linearities which should be taken account 
in order to describe accurately the 
experimental behavior of the specimen. It is 
important to ensure, for validating purposes, 
that the energy dissipates only in the concrete 
and not in the steel since the aim of this 
structural case is to assess the relevancy of the 
concrete constitutive law. Therefore, this 
loading can be considered as discriminant. 

Two cases have been considered in order to 
show the importance to take the frictional 
sliding mechanism into account. In the first 
case, the increment of the crack plastic strain 
is set up to zero whereas in a second case, it is 
computed according the constitutive equations 
presented here above. As this way, it is 
possible to assess the influence of this 
dissipative mechanism on the results obtained 
at the member scale. For both cases, a 
Rayleigh viscous damping model has been 
included. The related parameters are the same 
and they have been calibrated considered the 
first and the third eigenfrequency of the 
dynamic system with a damping ratio equal to 
2%. This equivalent viscous matrix allows 
accounting for damping at low level of 
excitations implying only a linear behavior of 
the materials. The results obtained at the first 
floor are presented in figures 14. 

Thanks to regularized crack closing model, 
robust computations, in a 3D solid elements 
description, without encountering classical 
convergence issues when dealing with non-
smooth unilateral effect. The introduction of 
frictional sliding during crack closing seems to 
improve the predictivity of the model. But the 
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ratio (and its evolution during loading) of the 
dissipated energy between the material 
nonlinearity and the global damping matrix is 
still an undergoing work. 
 

 
 
Figure 14: Comparison of the results with and witout 

hysteretic effects - response spectra at the first floor 

12 CONCLUSIONS 

The purpose of the present paper was to 
propose a two-level description of concrete 
cracking subject to cyclic loading. A 
microscopic model based on the discrete 
modelling approach is proposed allowing to 
account for refine phenomena such as crack 
opening, size effect, crack closure, frictional 
sliding. A continuum model for quasi-brittle 
materials able to reproduce phenomena 
observed under cyclic loading, while 
remaining sufficiently robust to simulate the 
behavior of massive structures is also 
proposed. The formulation of macroscopic 
constitutive laws has been established using a 
virtual testing approach. The continuity of the 
model (under reverse loading) has been 
tackled introducing the distribution function of 
a statistical Gaussian process to regularize the 
homogenized contact problem of closing 
cracks.  

Such smoothing function introduction has 
been physically justified by the analysis of 
micro-cracks opening and closure with the 
microscopic model. A homogenized cracks 
stress tensor, on which a perfect plastic model 
has been applied, to reproduce phenomena 
related to frictional sliding of cracks surfaces. 
Such modeling choices led to satisfying 
results, namely crescent-shaped and accurately 
positioned hysteresis loops. Quality of the 
resulting and identified model has been 
verified at the RVE scale and validated at the 
structural scale by the simulation of reinforced 
concrete building subject to earthquake 

loading. The simulation of the complete 
loading path has been achieved. This 
simulation served as a validation of the 
numerical robustness of the proposed 
continuum model. Improvements still need to 
be done regarding the quantification of energy 
dissipation at the local scale or structural level. 
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