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Abstract. This paper presents a new crack band model for stochastic finite element (FE) simulations
of quasibrittle fracture. The model is anchored by a probabilistic treatment of damage initiation, local-
ization and propagation. This study focuses on the case in which the finite element size is larger than
the width of the localization band. A weakest link model is used to describe the probabilistic onset
of damage localization inside the element, where the randomness of the location of the localization
band is related to the random material strength. Meanwhile, the model also includes the regulariza-
tion of fracture energy for the transition from damage initiation to localization. The proposed model
is applied to analyze the probability distributions of nominal strength of quasibrittle structures of dif-
ferent geometries. The results show that, without a proper treatment of probability distributions of
constitutive parameters, the direct application of the conventional crack band model for stochastic FE
simulations would lead to mesh-sensitive results. The proposed model is able to effectively mitigate
this issue of spurious mesh sensitivity.

1 INTRODUCTION

Quasibrittle materials are brittle heteroge-
nous materials. Common examples include
concrete, composites, tough ceramics, etc.
These materials have widely been used for
many modern engineering structures, such as
civil infrastructure, aircraft, ships, military ar-
mors, biomedical implants, microscale devices,
etc. It has been well known that the post-peak
constitutive response of quasibrittle materials
can be characterized by a gradual loss of load-
carrying capacity. Such a strain-softening be-
havior gives rise to the strain localization phe-
nomenon. It has been shown that the neces-

sary condition of localization instability can be
determined by the eigenvalue analysis of the
acoustic tensor at a material point. Meanwhile,
it has also been recognized that in addition to
the constitutive material behavior the boundary
condition and overall stress field may also affect
the onset of localization [12].

Localization instability is known to cause
spurious mesh sensitivity in the finite element
(FE) simulations. This is because the strain
softening behavior would cause damage to lo-
calize into a single layer of elements. Thus the
energy needed to cause material damage would
depend on the mesh discretization. One so-
lution to this problem is to introduce a mate-
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rial length scale into the model. This class of
models is usually referred to as the localiza-
tion limiters. The simplest localization limiter
is the crack band model developed by Bažant
and Oh [5], in which the post-peak portion of
the stress-strain curve of the material is adjusted
such that the overall fracture energy is kept con-
stant. While the crack band model is easy to
implement, special care needs to be taken for
the proper definition of the element size under a
multi-axial stress state as well as for high-order
elements [2, 13, 14]. Other localization limiter
adopts the concept of the nonlocal continuum,
where it is assumed that the constitutive behav-
ior of a material point depends on both the lo-
cal constitutive variables and the values of these
constitutive variables in the surrounding mate-
rial points. The class of nonlocal models can be
further divided into the integral-type [7, 22] and
the gradient-type models [1, 21].

All existing localization limiters were devel-
oped for deterministic analysis. Some recent re-
search attempts have been directed towards the
understanding of the effect of strain localization
on the reliability analysis due to its paramount
importance for structural design [4, 15]. So far,
there is still a lack of understanding of the ef-
fect of the strain localization mechanism on the
stochastic FE analysis of quasibrittle fracture
[9, 23].

This contribution presents a probabilistic
crack band model (PCBM) for stochastic FE
simulations of quasibrittle structures. This
model extends the conventional crack band
model by a probabilistic treatment of damage
evolution. It is limited to the case where the fi-
nite element size is larger than the crack band
width.

2 PROBABILISTIC TREATMENT OF
DAMAGE PROCESS

The essential idea of the conventional crack
band model lies in the adjustment of the ma-
terial’s constitutive relationship in order to pre-
serve fracture energy for localized damage. Fol-
lowing this concept, here we attempt to inves-
tigate how to adjust the probability distribu-

tions of the constitutive parameters to ensure the
mesh objectivity of stochastic FE simulations.

Figure 1: Localization of damage in one material ele-
ment.

We limit our attention to tensile damage,
where the stress-strain response is characterized
by three material parameters: the elastic mod-
ulus E, the tensile strength ft and the energy
dissipation density γ. In this study we con-
sider the randomness in the tensile strength and
the energy dissipation density and we assume
that these two variables are independent. The
same assumption has been adopted by some re-
cent studies on probabilistic analysis of quasib-
rittle structures [10, 11]. Now, the goal is to
determine the probability distribution of ft and
γ with taking into consideration the processes
of damage initiation and localization.

The constitutive behavior of each Gauss
point represents the mechanical behavior of a
material element in the FE simulation. Con-
sider this finite element of size he subjected to
an tensile stress, as shown in Fig. 1. Upon
loading, a damage band of fixed width h0 (usu-
ally referred to as the crack band width) would
form in this material element. The width h0 is
estimated by previous studies to be about two
to three times the maximum size of the mate-
rial inhomogeneities [3, 6, 8]. This crack band
width represents a characteristic length scale of
the damage localization process. In probabilis-
tic analysis, another length scale, the correla-
tion length, enters the problem as well. How-
ever, recent studies have shown that for mate-
rial properties of finite elements of size equal to
the crack band width can be considered as sta-
tistically independent [6, 11, 15]. Thus, the cor-
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relation length is expected to be considerably
smaller than the crack band width. Assuming
he > h0, we can treat the material properties of
each element as statistically independent.

2.1 Definition of localization level
The fracture process of quasibrittle materi-

als can be considered to consist of three stages:
damage initiation, damage localization, and
damage propagation. During the damage initi-
ation stage, a large distributed cracking zone is
formed in the structure. As the loading contin-
ues, these distributed cracks start to localize into
one macro-crack; and this macro-crack propa-
gates with a fracture process zone attached at its
tip. These three stages have very different im-
plications on the regularization of energy dissi-
pation as well as on the probabilistic treatment
of localized damage, it is therefore essential to
differentiate them for the probabilistic analysis
of quasibrittle fracture since.

In the context of FE simulations, we propose
a parameter for each Gauss point that measures
the level of localization

κc = (1) 1
(ni+no)

[
(ni+no+1) max

k≤no+ni
(φk)∑ni+no

k=0 φk
− 1

]
if φ0 > 0

0 if φ0 = 0

where ni = number of surrounding Gauss
points within the element of interest (i.e. inner
neighbors in Fig. 2), no = number of surround-
ing Gauss points within the neighboring ele-
ments (outer neighbors in Fig. 2), φ0 = damage
level of the Gauss point of interest, φk = dam-
age level of the kth surrounding Gauss points,
k ∈ {1, . . . , ni} refers to inner neighbors, and
k ∈ {ni + 1, . . . , ni +no} refers to outer neigh-
bors. The level of damage, φ, may simply be
chosen to be equal to the damage parameter. It
is noted that the detailed definition of φk is not
of particular importance since Eq. 1 uses the
damage levels in a relative sense. Eq. 1 im-
plies that the value of κc would increase with
the level of strain localization, and the maxi-
mum possible value of κ would be equal to 1,

which corresponds to the case where only one
Gauss point exhibits damage.

Figure 2: Determination of localization levels using in-
formation of neighboring Gauss points.

In addition to the strain localization level of
each Gauss point, it is also necessary to deter-
mine the localization level of the surrounding
Gauss points, which is described by

κw =
1

no − 1

no ·
ni+no
max
k=ni+1

φk∑ni+no

k=ni+1 φk
− 1

 (2)

In contrast to the previously defined parameter
κc, the localization parameter κw only considers
the surrounding Gauss points. In Section 2.3,
we will show that κw provides useful informa-
tion that determines the randomness of the on-
set of the localization band for that Gauss point.
This is essential for constructing the probability
distribution function of the strength. Further-
more it is noted that both localization parame-
ters κc and κw are treated as non-decreasing, i.e.
damage localization is an irreversible process.

2.2 Regularization of fracture energy
We first focus on the treatment of energy dis-

sipation density, where the probabilistic formu-
lation is based on the requirement of preserva-
tion of fracture energy for localized damage.
Energy regularization is an essential concept of
the conventional crack band model [5, 8], which
can be demonstrated by approximating the lo-
calized damage band as a cohesive crack (Fig.
1). The fracturing strain of the finite element
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equals to the opening of the cohesive crack di-
vided by the material element size. Therefore,
we have

γhe = Gf (3)

whereGf = fracture energy of the material. Eq.
3 leads to the fact that the stress-strain response
must depend on the material element size. Here
we define the reference stress-strain response of
a material element that has the same size as the
crack band width, h0. γ0 is the strain energy
density corresponding to this reference stress-
strain response. Clearly we have γ0h0 = Gf .

Eq. 3 is derived under assumption that the
localization has already occurred, which does
not explicitly address the transition from dam-
age initiation to localization. At the damage ini-
tiation stage, the total energy dissipation of the
material should be proportional to the element
size because the entire material element would
suffer distributed damage. To account for such a
transition, we propose a phenomenological en-
ergy regularization equation using the localiza-
tion parameter κc

γ = γ0f(κc) (4)

where: f(κc) =
h0
he

+

(
1− h0

he

)
exp

(
− κc
κ0c

)
(5)

Function f(κc) leads to a smooth transition of
the energy dissipation density from γ0 toGf/he
as the damage localizes. The transition is gov-
erned by the parameter κ0c.

We can determine the cumulative distribu-
tion function (cdf) of the energy dissipation
density γ from the probability distribution of
the fracture energy

Fγ(x) = Pr(γ ≤ x) (6)
= FGf

[xh0/f(κc)] (7)

Eq. 7 implies that the probability distribution
of the energy dissipation density is governed by
the localization parameter as well as the ratio
between the finite element size and the crack
band width. The distribution function FGf

is as-
sumed to obey a Gaussian-Weibull grafted dis-
tribution [16, 17].

2.3 Probabilistic treatment of tensile
strength

The foregoing analysis only considers the
formation of a damage band in single material
element. However, there is an inherent variabil-
ity of the location of the damage band inside
this material element. We may consider that the
location of the damage band is determined by
the tensile strength. In other words, the random
onset of the damage band in the material ele-
ment must be reflected by the statistics of the
tensile strength.

Since we assume independent strength at
possible locations of the damage band, we may
use the classical weakest link model to describe
the strength cdf for each Gauss point, i.e.

Fft(σ) = 1− [1− P1(σ)]ne (8)

where ne = number of potential crack bands
that could be formed in the material element
represented by the Gauss point, and P1(x) =
cdf of the tensile strength of the material ele-
ment of a size equal to the crack band width.
According to [4, 15], P1(x) is described by the
Gaussian-Weibull grafted distribution function
(Eq. 8) as well.

Figure 3: Propagation of localized damage.

The number of potential crack bands ne is
largely governed by the strain localization level
in the surrounding material elements. Consider
that one surrounding material element has expe-
rienced damage localization as shown in Fig. 3.
In such a case, the localized damage in the el-
ement would lead to stress concentration and it
would dictate the location of the onset of local-
ization band in the element of interest. There-
fore, there is only one potential crack band in-
side the element, ne = 1. The effect of the
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damage localization of the surrounding Gauss
points on the weakest link model is described
through an empirical function

ne = 1 +

(
he
h0
− 1

)
exp

(
− κw
κ0w

)
(9)

Figure 4: Three loading configurations: a) uniaxial ten-
sion, b) pure bending, and c) three-point bending.

3 NUMERICAL EXAMPLES
The proposed PCBM is applied to simu-

late the cdf of the maximal nominal stress,
σN,max, of three concrete specimens under dif-
ferent loading configurations (Fig. 4). The nom-
inal stress for these three specimens are ex-
pressed as the maximum principal stress based
on the elastic analysis

σN =


P/bD uniaxial tension
6M/bD2 pure bending
3PL/2bD2 three-point bending

(10)
where P,M = the applied load and moment,
D = specimen depth, L = specimen length,
and b = width of the specimen in the transverse
direction. Besides PCBM, two other models are
also used to perform these simulations for com-
parison purpose. These models are 1) the crack
band model (Eq. 7) without adjusting the proba-
bility distribution of tensile strength (i.e. ne = 1

for Eq. 9), which is denoted by CBM, and 2) the
crack band model (Eq. 7) with considering the
weakest link model of tensile strength regard-
less of the localization level (i.e. ne = he/h0
for Eq. 9), which is denoted by WLM.

A simple isotropic damage model is used in
the simulations. Its constitutive relationship can
be written as

σ = (1− ω)D : ε (11)

where D =elastic stiffness tensor and ω =
damage parameter describing the damage level
of the material point. ω can be expressed as a
function of the equivalent strain, ε̄, defined by
[18]

ε̄ =

√√√√ 3∑
I=1

〈εI〉2 (12)

where ε1−3 are principal strain values. The
damage parameter is then calculated by assum-
ing a linear softening behavior:

ω =


0 ε̄m ≤ ft/E

1− ft (2γ − ftε̄m)

ε̄m (2γE − f 2
t )

ft/E < ε̄m ≤ 2γ/ft

1 otherwise
(13)

where ε̄m is the maximum value of ε̄ that has
ever been attained during the past loading his-
tory.

To prevent a snap-back stress-strain behav-
ior, γ ≤ f 2

t /2E, and from Eq. (3) we have
he ≤ 2GfE/f

2
t . This represents an upper limit

of the element size he. Both ft and Gf are ran-
dom and there is always some probability of
having a snap-back stress-strain curve. How-
ever, this probability is extremely low for the
mesh sizes used in the present study. Speci-
mens are discretized using linear quadrilateral
elements with four integration points assuming
a 2D plane stress condition, the solver we mod-
ified and used is the OOFEM software [19, 20].

All specimens have a depth of D = 0.5 m
and a length of L = 4 m. The beams are
loaded by a prescribed deformation as shown
in Fig. 4. The following material parameters
are used in the analysis: elastic modulus E =
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30 GPa, Poisson’s ratio ν = 0.2, mean ten-
sile strength ft = 3 MPa, mean fracture en-
ergy Gf = 80 J/m2. For the probability distri-
butions of tensile strength and fracture energy,
we set the coefficient variation CoV= 0.15,
the grafting distribution Pgr = 10−3, and the
Weibull modulusm = 26. Three different mesh
sizes are considered: (hx, hy) = (50, 50) mm,
(100, 50) mm, and (200, 50) mm, where hx, hy
denote the width and depth of the element, re-
spectively. The crack band width h0 is set to be
50 mm.

The model parameters κ0c and κ0w are found
by minimization of the difference between re-
sults computed on different mesh sizes. This
minimization yields κ0c = 0.190 and κ0w =
0.283.

4 RESULTS AND DISCUSSION
Fig. 5 presents the cdf of the nominal

strength of the beams simulated by the afore-
mentioned three methods. Each of these
strength distributions are obtained from 1000
realizations. For the reference size, hx = h0,
all three methods yield the same result. As we
use a larger element size, the CBM overesti-
mates the structural strength because it does not
take into account the potential randomness of
the onset of localization band. On contrary, the
WLM underestimates the strength distribution
of the beam as the element size increases be-
cause it does not account for the crack path pre-
determined by the previous damage in the sur-
rounding elements.

The results show that the PCBM can effec-
tively mitigate the mesh dependence of proba-
bilistic simulation of quasibrittle structure. It
is interesting to note that for the uniaxial ten-
sion the results of PCBM and WLM exhibit a
large difference compared to what is seen in the
other two loading scenarios. This can be at-
tributed to the spatial distribution of the param-
eter κw at the peak load shown as Fig. 6. In both
three-point bending and pure bending cases, the
specimen exhibits relatively high values of κw,
which indicates that the PCBM is close to the
CBM. In the uniaxial tension case, the values of

κw are more spread and the difference between
the PCBM and CBM is more pronounced.
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Figure 5: Simulated cdfs of nominal strength of three
specimens with different mesh sizes.

5 CONCLUSIONS
This study shows that stochastic simulations

by using the conventional crack band model
could suffer the issue of mesh dependence. The
underlying reason for such mesh dependence
lies in the lack of consideration of the random
onset of localization band inside the material el-
ement. The issue can effectively be mitigated
by using a finite weakest link model for the
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Figure 6: Localization parameter κw at the peak load.

randomness of the damage localization band in
each material element, where the statistics of
the random onset of localization is governed
by the localization level of its neighboring el-
ements. In addition to the consideration of ran-
dom onset of localization band in the material
element, it is essential to take into account the
regularization of fracture energy for the transi-
tion between damage initiation and localization.
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[15] J.-L. Le, Z. P. Bažant, and M. Z. Bazant.
Unified nano-mechanics based probabilis-
tic theory of quasibrittle and brittle struc-
tures: I. strength, crack growth, life-
time and scaling. J. Mech. Phys. Solids,
59:1291–1321, 2011.

[16] J.-L. Le and J. Eliáš. A probabilistic crack
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