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Abstract. The zero thickness, fracture mechanics inspired cohesive crack model has been widely
used in its various formulations. The constitutive model being formulated in terms of about fourteen
parameters, yet only few can be measured experimentally, and other must be estimated.

This paper performs a sensitivity analysis to assess the relative importance of each of the param-
eters resulting in the model Tornado diagram. For the most sensitive parameters, uncertainty quan-
tification is performed through Latin Hypercube Sampling to determine capacity and fragility curves.
Finally, impact of correlation among the parameters is assessed.

The study is conducted by performing pushover analysis of a simple interface element under mode
I and II, and dynamic analysis of a dam with joint elements subjected to mixed-mode fracture. This in-
vestigation leads to a probabilistic-based safety assessment of structures which responses is primarily
governed by cohesive cracking.

1 Introduction
Zero thickness interface elements were first

developed in the context of rock mechanics
[1]. Cohesive crack models have indeed gained
much acceptance as an alternative to linear elas-
tic fracture mechanics. As to cementitious ma-
terials, the Hillerborg’s cohesive crack model
[2] defined a new class of fracture mechanics-
based interface elements [3–6]. They are used
in the context of the so-called discrete crack
model (as opposed to smeared crack model) in
the finite element simulation of cracking.

The cohesive elements would typically be
formulated in terms of well over ten parame-
ters (described below). A major challenge in
their use is the selection of the parameters as
only few can be measured experimentally, and
the remaining must be estimated. Hence, a crit-

ical question is how important is the accurate
estimate of each of the model parameters. This
can only be achieved through sensitivity and un-
certainty analyses.

Sources of uncertainty can be traced to one
of eight groups [7]. Chief among them is the ba-
sic random variables (RVs), X = (X1, ..., Xn).
The RVs in turn can be categorized as aleatory
or epistemic [7]. An aleatory uncertainty is
presumed to be the intrinsic randomness of a
phenomenon, while an epistemic one is due to
lack of knowledge. The basic qualifier refers to
directly observable quantities such as material
properties (strength and stiffness), loads (earth-
quake magnitude and sea wave height), envi-
ronmental phenomenons (temperature, alkali-
aggregate reaction), and geometric dimensions
(section size).

1

DOI 10.21012/FC9.046



M.A. Hariri-Ardebili, and V.E. Saouma

The study is conducted by performing
pushover analysis of a simple interface element
under mode I and II, and dynamic analysis of
a dam with joint elements subjected to mixed-
mode fracture. This investigation leads to a
probabilistic-based safety assessment of struc-
tures, in the context of fragility curves, which
responses is primarily governed by cohesive
cracking [8].

2 Background; Theory
2.1 Interface Joint Model

As mentioned earlier, there are a number of
fracture mechanics-based interface joint mod-
els; however, for the context of this paper [5] is
used. It should be noted that most of the exist-
ing models are essentially mere variation of the
one used. The element constitutive model is de-
fined with respect to a general fractureand the
corresponding failure surface, figure 1(a). The
generalized failure surface is given by [9]

F = (τ 21 + τ 22 )− 2 c tan(φf )(ft − σ)

− tan2(φf )(σ
2 − f 2

t ) = 0
(1)

where c is the cohesion, φf is the angle of fric-
tion, ft is the tensile strength of the interface,
τ1 and τ2 are the two tangential components of
the interface traction vector, and finally σ is the
normal traction component. The shape of the
2D failure function is shown in figure 1(a). The
general 3D failure function is obtained by mere
rotation around the σ-axis.
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Figure 1: Zero-thickness interface joint element and cor-
responding failure surface

The evolution of the failure function is based
on a softening parameter uieff which is the norm
of the inelastic displacement vector ui. In the
present study, a bi-linear relationship is used
for c(uieff) and ft(uieff), figure 1(b), where GI

F

and GII
F are mode I and II fracture energies.

s1c, w1c, s1σ and w1σ are the coordinates of the
break-point in the bi-linear softening laws for
cohesion and tensile strength, respectively. The
critical opening and sliding corresponding to
zero cohesion and tensile strength are denoted
by wσ and wc respectively, and they are deter-
mined from the condition that the area under the
bi-linear softening law must be equal to GI

F and
GII
F respectively.

2.2 Sensitivity Analysis
Sensitivity analysis determines the impact of

a variation in an input parameter on output re-
sults. Mathematically, this corresponds to the
partial derivative of the output function (the fi-
nite element model in this case) with respect to
an input parameter at a given design point.

The procedure starts with the identification
of the basic RVs, X = (X1, · · · , Xn), and their
corresponding distributional model (e.g. nor-
mal, log-normal). The response can be math-
ematically expressed as

Θ = f (X1, X2, · · · , Xi, · · · , Xn) (2)

Then, 2n+1 analyses are performed [10] us-
ing mean (Xmean

i ), minimum (Xmin
i ) and maxi-

mum (Xmax
i ) values of the RVs. Subsequently,

the reference (ΘRef), the minimum (Θmin
i ) and

the maximum responses (Θmax
i ) are determined.

The swing for each of the n RVs is computed
next

Θswing
i =

∣∣Θmax
i −Θmin

i

∣∣ (3)

and are sorted in descending order. Finally, the
Tornado diagram is plotted and one has to arbi-
trarily decide what are the most sensitive RVs,
figure 2.

Variable
Distributional 

model

m
ax

m
ean

m
in Structural analysis (simulation)

1X  mean max min

11: ,ii S i X X    

2X  mean max min

22 : ,ii S i X X    

1nX   mean max min

11: ,i ni S i n X X 

    

nX  mean max min: ,i ni S i n X X    

swing

i

Ref

Tornado diagram

...

...

min

i max

i

Ref

Figure 2: Sensitivity analysis using Tornado diagram
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2.3 Uncertainty Quantification
Uncertainty arises from the probabilistic na-

ture of the input data resulting in a non-
deterministic outcome. Sampling of the dis-
tributional model is indeed a key element of
an uncertainty analysis. By far, the most
widely used sampling method is the so-called
Monte Carlo Simulation (MCS). Success of
the method hinges on a very large number of
analysis as limited sampling may not include
values in the outer ranges of the distribution.
As a palliative to this handicap, an improved
sampling method is achieved through the so-
called Latin Hypercube Sampling (LHS) [11].
LHS guarantees samples to be drawn over the
whole range of the distribution and proceeds
as follows. Given a system with basic RVs,
X = (X1, ..., Xn) and corresponding distribu-
tions D1, ..., Dn, first the range of each vari-
able is split into m non-overlapping intervals
of equal marginal probability 1/m. Then, sam-
pling starts with the random selection of an in-
terval followed by another random selection of
a point inside it. The procedure is repeated un-
til all intervals have been accessed, and none
of them more than once. This procedure is re-
peated for each of the n RVs. Figure 3 illus-
trated the LHS two RVs and m = 8.
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Figure 3: Illustrative example of LHS for X = (X1, X2)

So far, the RVs have been assumed to be un-
correlated. Yet at times they are, e.g. the com-
pressive strength and elastic modulus of con-
crete are related by E = 57, 000

√
f ′c. Thus, in

the presence of the correlated variables, the pre-
viously described algorithm for the LHS must
be refined to account for the correlation ma-
trix. This can be achieved using the Iman and
Conover algorithm [11].

2.4 Capacity Curves
Results of structural analyses under the

monotonically increased load or displacement
can be expressed in term of capacity curve. The
capacity curve has on its horizontal axis an en-
gineering demand parameter (EDP) (e.g. dis-
placement, crack length ratio, joint opening)
and on the vertical one an intensity measure
(IM) (e.g. peak ground acceleration (PGA) or
spectral acceleration Sa(T ) for dynamic anal-
ysis and applied load or displacement in a
pushover analysis - POA). Capacity curve cov-
ers the full range of response from linear to non-
linear and ultimately failure.

2.5 Fragility Curves
A fragility curve is the probability of failure

(or other limit states - LS) of a system as a func-
tion of IM [12]. It is called seismic fragility
curve if it is obtained from seismic analysis. A
log-normal cumulative distribution function is
usually used to define it

P [F | IM = im] = Φ

(
ln(im)− ln(η F | IM)

β F | IM

)
(4)

where F corresponds to fracture, P[A|B] is the
probability of occurrence of A conditioned on
B, Φ(.) is the standard normal cumulative dis-
tribution function, η F | IM median of the fragility
function, and β F | IM the logarithmic standard
deviation (also called dispersion). The esti-
mated median and dispersion (logarithmic stan-
dard deviation) are given by

η̂ F | IM = exp

(
1

m

m∑
i=1

ln(IMi)

)

β̂ F | IM =

√√√√ 1

m− 1

m∑
i=1

(
ln
(

IMi

η̂ F | IM

))2
(5)
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where m is the number of simulations (number
of sampling points in MCS or LHS).

3 Finite Element Simulations

Three representative problems are selected:
(1) Mode I fracture: The response of a crack
in pure mode I fracture subjected to monotoni-
cally increased displacement; (2) Mode II frac-
ture: Similar to the preceding case, but the crack
is subjected to a mode II crack sliding displace-
ment; (3) Mixed-mode fracture: The dynamic
response of a concrete dam-foundation joint is
assessed using ETA method [13].

The finite element models of the three case
studies are shown in figure 4. The mode I
fracture is subjected to an imposed vertical dis-
placement, while the mode II one is subjected
to an imposed shear displacement on the lower
face of the upper block (while it is also sub-
jected to imposed compressive traction). The
mixed-mode fracture is simulated through the
seismic response of a rock-concrete joint.
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Figure 4: Investigated models

For the present study, the fracture parame-
ters shown in Table 1 are used. To each param-
eter a mean value and the coefficient of varia-
tion (COV) (which is the ratio of standard devi-
ation to mean) is assumed based on engineering
judgment. In all the cases, normal distributions
are assumed and are truncated to [0.5 mean, 1.5
mean].

Table 1: Parameters defining the zero-thickness interface joint element

Characteristics Symbol Unit Mean COV [Lower, Upper]
Tangential stiffness kt GPa 224 0.2 [112, 336]
Normal stiffness kn GPa 224 0.2 [112, 336]
Tensile strength ft MPa 2.24 0.2 [1.12, 3.36]
Cohesion c MPa 1.90 0.2 [0.95, 2.85]
Friction angle φf Deg. 38 0.2 [19, 57]
Dilatancy angle φd Deg. 20 0.2 [10, 30]
Specific mode I fracture energy GIF N/m 252 0.2 [126, 378]
Specific mode II fracture energy GIIF N/m 2520 0.2 [1260, 3780]
Relative irreversible deformation γ - 0.3 0.1 [0.15, 0.45]
Max. displacement for dilatancy uDmax m 0.01 0.1 [0.005, 0.015]
Tensile stress at break-point s1σ MPa 0.56 - -
COD at break-point w1σ m 1.12e-4 - -
Cohesion at break-point s1c MPa 0.475 - -
CSD at break-point w1c m 1.89E-3 - -
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4 Results and discussion
4.1 Mode I Fracture
4.1.1 Sensitivity Analysis

In the presence of 14 RVs, 2×14+1=29 dis-
placement control POA are performed. In order
to investigate the sensitivity of the results to the
variation of the particular RV, two (r = 2) sets
of boundary limits are considered. First a low
variation [0.75ηRVi , 1.25ηRVi], and then a high
variation [0.50ηRVi , 1.50ηRVi]. Note that ηRVi is
the median of the ith RV which is equal to the
mean for the normal distributions.
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Figure 5: Capacity curves for mode I fracture

Figure 5 shows the capacity curves from the
29 POA for the two models. Response is ei-
ther bi- or tri-linear. The first change in slope
corresponds to fracture initiation and the sec-
ond to failure. As expected the narrower band,
figure 5(a), exhibits smaller dispersion than the
broader one.

(a) (0.75, 1.25)ηRVi
(b) (0.50, 1.50)ηRVi

Figure 6: Tornado diagrams for the mode I fracture

The Tornado diagram corresponding to these
two analyses are shown in figure 6. It is worth
noting, that though this model has 14 param-
eters, only about half of them govern the re-
sponse in mode I. By far, the dominant effect
is the tensile strength ft. This is to be antici-
pated given the failure envelope in figure 1(a).

In figure 6(b) the bar diagram corresponding to
GI
F indicates sensitivity to increases of the orig-

inal GI
F and not to their decrease. Likewise for

some of the other eccentric values. Henceforth,
in this case about half of the parameters may
have to be assumed as variables, the others can
be fixed.

4.1.2 Uncertainty Quantification

In this case only 10 of the RVs are consid-
ered. They are all the material parameters ex-
cept those defining the softening break points.
Since multiple RVs are concurrently selected,
one can consider either one of two cases: uncor-
related or correlated RVs. A total ofm = 1, 000
analyses are performed for each case. Results
of the correlated sampling (driven by LHS) is
shown in figure 7. Correlation coefficients are
selected based on engineering judgment and
previous researches. The diagonal plots are the
histograms of each RV (truncated normal distri-
bution).
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Figure 7: LHS-based correlated sampling of the RVs

Figure 8 compares the uncertainty quantifi-
cation with and without correlations. The dis-
persion for correlated RVs is nearly constant. In
the uncorrelated RVs, it peaks, than descends.
In this case the dispersion is nearly twice the
one of the correlated RVs. Finally, the fragility
curves of the correlated case better match the
empirical data points than in the uncorrelated
one.
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Figure 8: Impact of RV correlation on the uncertainty quantification of the mode I fracture

4.2 Mode II Fracture
4.2.1 Sensitivity Analysis

In this case, two plates are in contact through
the zero-thickness interface element, while a
normal compressive traction is applied on the
top face, and displacement imposed on the
lower surface of the top plate. Again, two sets
of boundary limits are considered: a low varia-
tion [0.75ηRVi , 1.25ηRVi], and then a high vari-
ation [0.50ηRVi , 1.50ηRVi]. Figure 9 shows the
capacity curves resulted from POA for the two
bounded models. Contrarily to the Mode I case
(figure 5), the transition from linear to sliding
to failure is much smoother. In the former case,
the failure is indeed more brittle, whereas in this
case, the presence of friction dampens the re-
sponse. As before, there is a higher variation in
the broad band.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

Joint sliding [mm]

A
pp

lie
d 

di
sp

la
ce

m
en

t [
m

m
]

(a) (0.75, 1.25)ηRVi

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

Joint sliding [mm]

A
pp

lie
d 

di
sp

la
ce

m
en

t [
m

m
]

(b) (0.50, 1.50)ηRVi

Figure 9: Capacity curves for the mode II fracture

Figure 10 shows the associated tornado di-
agram. Clearly, and as expected, cohesion c
and angle of friction φf are dominant. Surpris-

ingly, in this pure mode II loading, GI
F and GII

F

have similar (but marginal) impact. Contrarily
to Mode I, the bounds have no impact on the or-
der of the most sensitive variables, figure 6 vs.
figure 10.

(a) (0.75, 1.25)ηRVi
(b) (0.50, 1.50)ηRVi

Figure 10: Tornado diagrams for the mode II fracture

4.2.2 Uncertainty Quantification

Similar to the mode I, the correlated and
uncorrelated RVs are investigated for mode II,
Figure 11. In both cases, the capacity functions
are quite similar, while there is a discontinu-
ity in the dispersion curve for the uncorrelated
condition. The medians of the two fragility
curves are identical and the dispersion of un-
correlated RVs is slightly higher than the other
one. This is due to the dominant role of φf and
c in Mode II. Hence, and contrarily to the Mode
I case, having correlated RVs does not improve
the fragility curve (nearly identical dispersion).
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Figure 11: Impact of RV correlation on the uncertainty quantification of the mode II fracture

4.3 Mixed-Mode Fracture

Having examined two highly idealized cases,
attention is now turned to a mixed mode crack
propagation in a real structure: a concrete dam
subjected to seismic loading, figure 4(c). In this
case the nonlinear response is governed by the

one of the zero-thickness interface elements be-
tween concrete and rock. Variables associated
with the joint have already been reported in Ta-
ble 1 and Table 2 shows the RVs associated with
concrete and rock. Four of them will be added
to the list of 13 RVs: Ec, νc, ρc, and Ef for a
complete assessment.

Table 2: Characteristics of concrete and rock

Characteristics Symbol Unit Mean COV [Lower, Upper]
Concrete modulus of elasticity Ec GPa 22.4 0.15 [15.6, 29.1]
Concrete Poisson’s ratio νc - 0.2 0.15 [0.14, 0.26]
Concrete tensile strength ftc MPa 2.24 0.20 [1.12, 3.36]
Concrete mass density ρc kg/m3 2500 0.10 [2000, 3000]
Foundation modulus of elasticity Ef GPa 24.0 0.15 [16.8, 31.2]
Foundation Poisson’s ratio νf - 0.25 0.15 [0.18, 0.32]

4.3.1 Sensitivity Analysis

Sensitivity analysis will be performed for 12
RVs for the joint (uDmax and γ were left out
in light of their limited contribution), and the
four elastic proprieties of the concrete and rock.
Thus, 2×16+1 = 33 observations are required.

In the spirit of this probabilistic-based frac-
ture mechanics investigation, three separate ac-
celeration functions are considered within the
framework of the so-called ETA method [13].
This method uses 3 dynamic analyses for each
case and then takes the mean response. Hence

the original 33 models have to be analyzed three
times each resulting in 99 nonlinear transient
analyses. In this third case, the boundary lim-
its were arbitrarily set to [0.66ηRVi , 1.33ηRVi].

Based on the mean response of the three
analyses, the Tornado diagram is determined
in figure 12. A major difference with the pre-
ceding two Tornado diagrams (figure 6 and
10) nearly all parameters are equally important.
This implies that there are no redundant param-
eters in the examined model.
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Figure 12: Tornado diagram for the mixed-mode fracture

4.3.2 Uncertainty Quantification

Since the preceding sensitivity analysis has
determined that all RVs are nearly equally rel-
evant, the uncertainty quantification will retain
them all. For each set of uncertainty, 100 simu-
lations are performed. Again, two set of analy-
ses will be reported. In the first one RV is sam-
pled at a time, in the second, all the RVs are
sampled simultaneously. Furthermore, whereas
in the first two cases there was only a single LS
which indicated failure, in the case of a dam,
four of them are identified. They correspond
to crack length over the total base. Four dis-
tinct ones are selected 10%, 30%, 60%, and
99% [13].

Single RV: It was determined that nearly all
the fragility curves corresponding to a
given LSi (i = 1, 2, 3, 4) are identical.
This confirms the results of sensitivity
analysis in figure 12. To better quantify
the results, the median and dispersion are
separately shown in figure 13. It is noted
that the median at LS=0.10 and LS=0.30
are almost identical for all RVs. The me-
dian at LS=0.60 and LS=0.99 vary for
different RVs yet have the same trend.
Another notable observation is that the
dispersion of RV1= ρc is about twice
the next highest one. This can be ex-

plained by the fact that in the context of
the seismic analysis, proper evaluation of
the mass is essential.

Multiple RV: Correlated and uncorrelated RVs
when they are all modified simultane-
ously are shown in figure 14. It is clear
that in this process the range of capac-
ity curves go from nearly zero to a maxi-
mum. The former is induced by a random
selection of unfavorable RVs across the
board. Examination of the damage index
reveals that higher PGAs are needed to
trigger larger limit states. Results for cor-
related an uncorrelated values are nearly
identical. The fragility curves confirm
the brittle nature of the problem, where
difference between LS=0.10 and 0.30 is
small; however the one between 0.30 and
0.60 is substantially larger. Accounting
for correlation reduces the dispersion of
fragility curves, Table 3.
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Figure 13: Comparison of all RVs for four LSs under
mixed-mode fracture condition

Table 3: Dispersions β of dam analyses

LS 0.10 0.30 0.60 0.99
Correlated 0.78 0.82 1.03 1.06
Un-correlated 0.85 0.91 1.21 1.12
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(c) Fragility curve, Correlated
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(d) Capacity curves, Uncorrelated
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(e) Damage index, Uncorrelated
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(f) Fragility curve, Uncorrelated

Figure 14: Impact of RV correlation on the uncertainty quantification of the mixed-mode fracture

5 Summary and Conclusions
The main source of nonlinearity in numerous

failure simulations is indeed the fracture (Mode
I and/or II) of the solid, whereas the body re-
mains linear. A major handicap of this approach
is the proper selection of the numerous material
properties required by their constitutive mod-
els. Whereas few can indeed be measured ex-
perimentally, others have to be deduced, or ob-
tained through system identification. The un-
certainty caused by this arbitrary selection calls
for a more rigorous quantification of the poten-
tial error.

This paper was an attempt to elucidate the
importance of the fourteen parameters defining
a fracture mechanics based zero thickness co-
hesive crack model. This is achieved within the
framework of a rigorous probabilistic approach.

Most of the results confirm what may be in-
tuitively guessed, the procedure quantifies for
the first time their importance. Among the other
unanticipated conclusions, one can mention:

1. The bi- and tri-linear form of the capacity
curve in mode I fracture vs. the smoothed
curve for Mode II fracture.

2. Importance of the boundary variation,
(1 − e, 1 + e)ηRVi , for Mode I fracture,
while it does not affect the tornado dia-

gram in Mode II fracture.

3. Four completely different form of capac-
ity curves in Mode I, while all curves in
Mode II are nearly identical.

4. There is a discontinuity in dispersion
curves of the Mode I, while they are uni-
form in Mode II.

5. Better correlation of fitted fragility curve
and the empirical data points in Mode II
single RVs than Mode I.

6. Priority in using correlated RVs than to
un-correlated one for Mode I and mixed-
mode fracture, while its effect is negligi-
ble in Mode II.

7. Determining 5 most sensitive RVs in
Mode I and 3 in Mode II; however, in
mixed mode all of the RVs are nearly im-
portant.

Those findings should provide guidance for
analysts seeking to use similar zero thickness
cohesive crack models in their studies.
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Pere C. Prat. Microplane type constitu-
tive models for distributed damage and lo-
calized cracking in concrete structures. In
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