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Abstract. This paper reviews a recently developed finite weakest link model of strength of quasibrittle
structures, which fail under controlled load at macro-crack initiation from one representative volume
element (RVE). The probability distribution of RVE strength is derived from the transition state theory
and a hierarchical multi-scale transition model. The model predicts that the strength distribution of
quasibrittle structures depends on the structure size and geometry, transitioning from a predominantly
Gaussian distribution to a Weibull distribution as the structure size increases. By further considering
the load randomness, it is shown that the size dependence of the strength distribution directly leads to
a strong size effect on the Cornell reliability index. Through asymptotic matching, approximate size
effect equations can be constructed for both the nominal and central safety factors. The important role
of size effect in the reliability analysis of large-size structures is demonstrated through the analysis of
the failure of the Malpasset Dam.

1 INTRODUCTION

It is a well accepted fact that no engineer-
ing structures can be designed to be risk free.
In practice, the design of structures is required
to target a tolerable failure probability, which
is generally on the order of 10−6 [17, 27, 28].
For structural design against such a low fail-
ure risk, a good understanding of the probabil-
ity distribution of structural strength is essen-
tial. For perfectly ductile and brittle structures,
the strength distribution can be determined from
well-established probability theories. The cu-
mulative distribution function (cdf) of strength
of ductile structures must follow the Gaussian
distribution according to the Central Limit The-

orem [1] since the nominal structural strength
can be calculated as the weighted sum of the
strengths of the material elements along the fail-
ure surface. By contrast, the failure of perfectly
brittle structures is triggered by the failure of
one material element whose size is negligible
compared to the structure size. According to the
classical weakest link model, the strength cdf of
brittle structures must follow the Weibull distri-
bution [32, 33]. Both the Gaussian and Weibull
distributions are two-parameter probability dis-
tribution functions, which can be calibrated by
histogram testing of a relatively small number
of specimens.

Neither of the aforementioned cases can be
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applied to quasibrittle structures, in which the
size of material inhomogenieties is not negli-
gible compared to the overall structure size.
As a result, the failure behavior of quasibrittle
structures lies in between the ductile and brit-
tle limits. Furthermore, it has been well doc-
umented that failure of quasibrittle structures
exhibits a strong size dependence, transitioning
from a quasi-plastic failure behavior for small-
size structures to a perfectly brittle behavior
for large-size structures [3–5, 10]. Based on
the aforementioned probability distributions of
strengths of ductile and brittle structures, it is
clear that the strength cdf is closely tied with
the failure behavior of the structure. Since qua-
sibrittle structures have a size-dependent fail-
ure mechanism, it is natural to expect that the
strength cdf would depend on the structure size
and geometry.

This paper reviews a recently developed
probabilistic model of strength of quasibrittle
structures with an emphasis on its size depen-
dence [6, 8, 9, 23]. This probabilistic model has
important implications on reliability-based de-
sign of quasibrittle structures in terms of the
size dependence of reliability indices and safety
factors, which is also summarized in this paper.

2 FINITE WEAKEST LINK MODEL
This study focuses on the quasibrittle struc-

tures, which fail (under controlled load) at the
initiation of a macro-crack from one RVE. This
is a dangerous failure mode since there is no
precursor to the failure. Statistically, the fail-
ure of this class of structures is equivalent to
a chain of RVEs and follows the weakest-link
model, in which each link corresponds to one
RVE and has a statistically independent strength
[18]. Consequently, the strength distribution of
the structure can be calculated by using the joint
probability theorem, i.e.:

PR(σN) = 1− ΠN
i=1{1− P1[σNs(xi)]} (1)

where N = number of RVEs in the structure
= V/V0, V and V0 are the volumes of the en-
tire structure and one RVE, respectively, P1 =
cdf of strength of one RVE, σN = nominal

structural strength, which is a load parame-
ter of the dimension of stress. In general,
σN = cnPm/bD or cnPm/D2 for two- or three-
dimensional scaling, Pm = maximum load of
the structure, cn = dimensionless parameter
chosen such that σN represents the maximum
principal stress in the structure, b = structure
thickness in the third dimension, D = charac-
teristic structure dimension or size, and s(xi) =
dimensionless stress field such that the actual
stress σ(xi) in the i-th RVE centered at coor-
dinates xi is equal to σNs(xi). σ(xi) may be
interpreted as the maximum principal stress σI .

More generally, stress σ may be replaced by
a suitable stress tensor function, c(σ), captur-
ing the triaxiality of failure criterion [10, 29].
This function can be simplified into the condi-
tion of independent survival of the RVE under
each of the three principal stresses, σI , σII and
σIII [12], provided that a crack normal to any
principal stress can cause failure. In this study
the second and third principal stresses are as-
sumed to be either correlated to the first or too
small compared to the first σ(xi) = c(σ(xi)) ≈
σI(xi), in which Eq. 1 can be re-written as

ln(1− PR) =
N∑
i=1

ln[1− P1(c(σ(xi)))] (2)

≈
N∑
i=1

III∑
j=I

ln[1− P1(σj(xi))](3)

≈
N∑
i=1

ln[1− P1(σI(xi))] (4)

It is clear that for structure of any size and
geometry the calculation of the overall fail-
ure probability hinges on the knowledge of the
strength distribution of one RVE. In a series of
recent studies [6, 8, 9, 23], a multiscale statis-
tical model was developed to derive the func-
tional form of the cdf of RVE strength (Fig. 1).
In this model, the failure probability of a nano-
scale structural element, such as an atomic lat-
tice and a disordered system of nano-particles,
is first determined based on the Kramer’s rule of
transition state theory and on atomistic fracture
mechanics (Fig. 1a) [6, 21, 23].
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To link the failure statistics of the nano-scale
structural element to the macroscopic RVE,
a hierarchical statistical model is formulated,
which consists of a bundle of only two long sub-
chains, each of which consists of sub-bundles of
two sub-sub-chains, each of which consists of
sub-sub-bundles, etc., until the nano-scale el-
ement is reached (see Fig. 1b). Though the
hierarchical model merely represents a mathe-
matical approximation of multi-scale transition
of strength statistics, it qualitatively reflects two
main physical mechanisms of the failure of qua-
sibrittle materials, namely the distributed dam-
age (as a condition of compatibility of deforma-
tions of the sub-RVEs along the FPZ) and the
localization of damage (among the sub-RVEs
across the FPZ).

a 5 nm
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Figure 1: Multiscale modeling of strength statistics of
quasibrittle structures.

Based on the properties of the strength statis-
tics of bundles and chains, it has been shown
that the cdf of RVE strength could be approx-
imated by a Gaussian distribution onto which
a Weibull tail is grafted at a probability about
10−4 − 10−3. Mathematically, P1(σ) can be
written as

P1(σ) = 1− e−〈σ/s1〉
m

(σ ≤ σgr) (5a)

P1(σ) = Pgr +
rf

δG
√

2π

×
∫ σ

σgr

e
− (σ′−µG)2

2δ2
G dσ′ (σ > σgr)

(5b)

where 〈x〉 = max(x, 0), m = Weibull modu-
lus, s0 = scale parameter of the Weibull tail,

µG and δG are the mean and standard deviation
of the Gaussian core if considered extended to
−∞; rf is a scaling parameter required to nor-
malize the grafted cdf such that P1(∞) = 1, Pgr
= grafting probability = 1 − exp[−(σgr/s0)

m],
and σgr = grafting stress. Finally, continu-
ity of the probability density function (pdf) at
the grafting point requires that (dP1/dσ)|σ+

gr
=

(dP1/dσ)|σ−gr .
Substitution of Eqs. 5a and 5b into Eq. 1

directly yields the probability distribution of
structural strength PR(σN). We may consider
PR(σN) to consist of two parts: the lower seg-
ment can be represented by a chain of Weibull
elements, which must follow a Weibull distribu-
tion, and the upper segment can be represented
by a chain of Gaussian elements. These two
segments are separated at a probability Pg =

1−(1− Pgr)Neq , andNeq is the equivalent num-
ber of RVEs in the structure, which can be cal-
culated as

Neq =

∫
V

〈s(x)〉mdV (x)/V0 (6)

where V0 = ln0 , l0 = RVE size, and n(=
1, 2, 3) = dimensionality of the structure. Neq

physically represents the number of RVEs un-
der uniform stress σN , which has the same cdf
of the structural strength as does Eq. 1 under the
assumption that the entire strength cdf follows
the Weibull distribution [8, 9].

Depending on the value ofNeq, three asymp-
totic behaviors of PR(σN) can be identified
[23]:

1) When Neq is small, i.e. Neq ∈ (1, 20),
PR(σN) is predominantly Gaussian.

2) For the intermediate range of Neq val-
ues, i.e. Neq ∈ (50, 500), the majority part of
PR(σN) can be modeled as a chain of Gaussian
of elements, which asymptotically converges to
the Gumbel distribution [20].

3) For structures with a very large value of
Neq, i.e. Neq ≥ 2000, what matters for PR(σN)
is the tail part of P1(x) and therefore Eq. 1 nat-
urally approaches the Weibull distribution [32].
It should be pointed out that the intermediate
asymptote of the Gumbel distribution is usually
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irrelevant because the small and large asymp-
totes are not too far from each other.

Fig. 9
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Figure 2: Optimum fitting of measured strength his-
tograms by finite weakest link model.

Model

Figure 3: Size effect on strength distribution of asphalt
mixtures [24].

The finite weakest link model has been val-
idated by optimum fitting of measured strength
histograms of many quasibrittle materials, such
as engineering ceramics (sintered Si3N4 with
CTR2O3/Al2O3 [19] and sintered Si3N4 with
Al2O3-Y2O3 [30]) and dental ceramics (Dicor
[31] and Zironia TZP [31]) (Fig. 2). In a re-
cent study, a systematic size effect test was per-
formed on the strength distribution of asphalt
mixtures under three-point bending at a low
temperature (T = −24◦) [24]. Fig. 3 presents
the measured strength distributions of beams of
two different sizes. It is clear that the strength
distribution exhibits a strong size effect, and
such size dependence can be well captured by
the present finite weakest link model.

3 SIZE DEPENDENCE OF CORNELL
RELIABILITY INDEX

The foregoing discussion is limited to the
strength statistics of structures. In general anal-
ysis of structural reliability, it is essential to
also consider the uncertainty of applied loads.
We may define the failure state of a quasibrit-
tle structure as Z = σN − σL < 0, where
σL = cnP/bD = applied nominal stress of the
structure. By noting that σN and σL are statis-
tically independent, we can calculate the struc-
tural failure probability as

Pf =

∫ ∞
0

PR(x)fL(x)dx (7)

where fL(x) is the pdf of σL, and the cdf of
structural strength PR(x) can be computed from
Eq. 1. The most widely used approach to eval-
uate Pf is through the Cornell reliability index
within the framework of the First-Order Relia-
bility Method (FORM) [1, 13, 14]. For a linear
failure state, the Cornell index can be calculated
as

β = (µR − µL)/
√
δ2R + δ2L (8)

where µR, µL = mean values of the struc-
tural strength σN and the applied nominal stress
σL, respectively, and δR, δL = standard de-
viations of σN and σL, respectively. If both
σN and σL follow the Gaussian distributions,
then the Cornell index can be directly used
to compute the exact failure probability of the
structure, i.e. Pf = Φ(−β), where Φ(x) =
(
√

2π)−1
∫ x
∞ e
−x2/2dx = standard Gaussian dis-

tribution function.
Based on Eq. 8, the dependence of the Cor-

nell index can directly be related to the size ef-
fects on the mean and variance of σN , which
can be computed for any set of geometrically
similar structures as:

µR(D) =

∫ ∞
0

[1− PR(σN , D)]dσN (9)

δ2R(D) =

∫ ∞
0

σ2
NdPR(σN , D)− µ2

R(D) (10)

Although closed-form evaluations of these inte-
grals are not possible, approximate solutions for
µR(D) and δ2R(D) can be constructed through
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asymptotic matching [7, 9, 22, 23]:

µR(D) =

[
Na

D
+

(
Nb

D

)nr/m]1/r
(11)

δ2R(D) =

[
Ca
D

+

(
Cb
D

)2qn/m
]1/q

(12)

where Na, Nb, r, Ca, Cb, q = model parameters.
These parameters can be related to the statisti-
cal properties of RVE strength by the asymp-
totic conditions [22–24].

Knowing the model parameters for the ap-
proximate scaling relations for the mean and
variance of σN , we readily obtain a size-
dependent Cornell index for quasibrittle struc-
tures, i.e.:

β =

[
(Na/D) + (Nb/D)rn/m

]1/r − µL√
[(Ca/D) + (Cb/D)2qn/m]

1/q
+ δ2L

(13)
The size dependence of the Cornell index di-
rectly indicates that the overall failure probabil-
ity of quasibrittle structures must depend on the
structure size.

Note that, for quasibrittle structures, the Cor-
nell index would not yield the exact failure
probability (i.e. Φ(−β) 6= Pf ) since at least one
probability distribution, namely that of σN , is
generally not Gaussian. Nevertheless, the Cor-
nell index provides a qualitative description of
the risk level [16] and, as will be shown later,
Φ(−β) can in some cases give a reasonable ap-
proximation of the failure probability for qua-
sibrittle structures.

It should be pointed out that a recent study
also investigated the size effect on the Hasofer-
Lind index, which provides a more robust way
to compute the failure probability of quasibrittle
structures. The details of the size effect analysis
of the Hasofer-Lind index can be found in [22].

4 CALCULATION OF SAFETY FAC-
TORS

The reliability index provides an efficient
way of evaluating the failure risk of structures.

This lays down the foundation for the devel-
opment of reliability-based design method for
engineering structures. The most common ap-
proach for reliability-based structural design is
to use the safety factors, in which the failure
state is expressed by using either the nomi-
nal values or the mean values of the structural
strength and nominal applied stress.

For example, if the mean values are used, the
failure domain can be written as µR < ζ̄µL,
where ζ̄ is referred to as the central safety factor,
and if the nominal values are used, the failure
domain becomes µRN < ζµLN , where µRN =
nominal value of σN = µR−kRδR, µLN = nom-
inal value = σL = µL + kLδL; here kR, kL =
constants, and ζ is the nominal safety factor.

Both the central and nominal safety factors
ζ, ζ̄ have to be determined to ensure that the
overall failure probability of the structure is
equal to a prescribed value Pc, which is typ-
ically on the order of 10−6. As discussed in
the previous section, the overall failure prob-
ability of a quasibrittle structure strongly de-
pends on the structure size. Therefore, we ex-
pect that the safety factors that correspond to a
prescribed failure probability would also be size
dependent. In this section, we investigate this
size dependence by considering that the applied
nominal stress follows a Gaussian distribution,
which is a often assumed for typical loading, al-
though a lognormal distribution might be more
appropriate for bridges [15].

Based on the finite weakest link model, the
probability distribution of σN can be deter-
mined by four parameters of the strength cdf
of one RVE (Eqs. 5a and b), i.e., the Weibull
modulusm, Weibull scaling parameter s0, mean
RVE strength µ, and coefficient of variation
(CoV) of RVE strength ω. Here we fix the val-
ues of m, ω as well as the ratio between µ and
s0, denoted by ψ, and we will determine s0 for
a prescribed structural failure probability Pc.

To compute the safety factors, it is conve-
nient to consider an artificial RVE, where the
grafted strength cdf has the following param-
eters: Weibull modulus = m, Weibull scal-
ing parameter s0 = 1, mean strength =ψ, and
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CoV = ω. Since the Weibull tail of the grafted
cdf of RVE strength is very short, the mean of
the Gaussian core µG for this artificial mate-
rial RVE is approximately equal to the mean
RVE strength ψ and the standard deviation of
the Gaussian core δG is approximately equal to
ψω.

For a given structure, let µr, δr denote the
mean and standard deviation of the strength cdf
by assuming that the structure is made of the
aforementioned artificial RVE. Therefore, the
mean and standard deviation of the strength cdf
of the actual structure are simply equal to s0µr
and s0δr, respectively. The central and nominal
safety factors of the structure can be computed
as

ζ̄(D) =
s0(D)µr(D)

µL
(14)

ζ(D) =
s0(D)[µr(D)− kRδr(D)]

µL + kLδL
(15)

The size effects on µr(D) and δr(D) can be ap-
proximated by Eqs. 11 and 12, where the rele-
vant parameters can be related to m, ψ and ω.
The essential step now is to determine s0(D)
that would correspond to a prescribed failure
risk Pc.

First consider small-size structures as one
limiting case. Based on the finite weakest link
model, the strength cdf can be approximated as
the Gaussian distribution. Since here we con-
sider that σL follows a Gaussian cdf, it is ex-
pected that the Cornell index would give a good
estimation of the failure probability, which can
be written as

βc =
s0(D)µr(D)− µL√
s20(D)δ2r(D) + δ2L

(16)

where βc = −Φ−1(Pc). Following [14],
we may further write

√
s20(D)δ2r(D) + δ2L ≈

ε[s0(D)δr(D) + δL] and ε is around 0.75 for
most cases. With such a simplified approxima-
tion, we may compute s0(D) as

s0(D) =
εβcδL + µL
µr(D)

[
1− εβcδr(D)

µr(D)

]−1
(17)

At the large-size limit, the probability distri-
bution of structural strength follows the Weibull
distribution, which has a power-law tail extend-
ing to the point corresponding to a probability
of 0.1 (with 5% error in terms of the probabil-
ity), i.e. PR(σN) = 1− exp[−Neq(σN/s0)

m] ≈
Neq(σN/s0)

m. Since in practice we are only in-
terested in a low structural failure probability
(Pc ∼ 10−6), only the left tail matters for the
calculation of the overall failure probability:

Pf =

∫ ∞
0

fL(x)Neq(x/s0)
mdx (18)

Therefore, to ensure a failure probability Pc, we
must have

µr(D)s0(D) =

[
P−1c

∫ ∞
0

fL(x)xmdx
]1/m

Γ(1+1/m)

(19)
To asymptotically match the aforementioned

small and large-size asymptotes, the follow-
ing approximate equation is proposed for
µr(D)s0(D):

µr(D)s0(D) = C

[
1 +

γβcεδr(D)

µr(D)

]1/γ
(20)

where C, γ are constants; C and γ can be deter-
mined by matching the small-size and large-size
asymptotic behavior of µr(D)s0(D). With Eqs.
14, 15 and 20, the size-dependent central and
nominal safety factors are obtained:

ζ̄(D) = µ−1L C

[
1 +

γβcεδr(D)

µr(D)

]1/γ
(21)

ζ(D) = C

[
1 +

γβcεδr(D)

µr(D)

]1/γ
1− kRδr(D)/µr(D)

µL + kLδL
(22)

5 ANALYSIS OF FAILURE OF MALPAS-
SET DAM

We now demonstrate the role of size effect
in the reliability-based analysis and design of
concrete structures by analyzing the failure of
Malpsset arch dam. The dam was built across
the canyon of the Reyran Valley in France in
1954, and it failed in 1959 at the first full filling
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after five days of heavy rain. It has generally
been accepted that the failure was due to the
development of vertical flexural cracks engen-
dered by the lateral displacement of the abut-
ment [2, 26].

5.1 Model Description
Following the previous study [11], we em-

ploy a two dimensional arch model to represent
the dam (Fig. 4), in which the dimension of
the arch corresponds to the mid-height cross-
section of the actual dam, i.e. Ra = 92.68
m, Da = 6.78 m, and α = 66.5◦. The arch
is loaded by a displacement at its right sup-
port. To investigate the size effect on the failure
statistics of the dam, we consider a series of ge-
ometrically similar arches with different sizes,
where D = arch depth and R = arch radius
= 13.67 D. The classical engineering beam
theory yields the elastic bending stress

σ(θ, ξ) = σN
2ξ(cos θ − cosα)

1− cosα
(23)

where ξ = x/D and σN = structural strength of
the arch dam, which is equal to the maximum
elastic stress can be reached in the arch. The
probability distribution of σN can be calculated
using the finite weakest link model (Eq. 1).

�ș

'

'ȟ

�Į ����
5 �����'

Abutment 
movement

Figure 4: 2D simplified model of dam.

Meanwhile, Castigliano’s theorem is used to
calculate the nominal applied stress in the arch
as a function of the abutment movement ∆:

σL =
E(1− cosα)D∆

2R2
∫ α
−α(cos θ − cosα)2dθ

(24)

Based on the geometry of the dam and elastic
property of concrete, we obtain σL = 1.51δ,
where δ = normalized abutment displacement
= ∆/D.

The failure state for the arch can simply be
written as σN − σL < 0. Previous studies
[11, 25] led to the following parameters for the
RVE strength distribution of concrete: m =
24, s0 = 2.12 MPa, µG = 2.91 MPa, δG = 0.44
MPa, ω = 0.15, and a RVE size of 280 mm.
However, the cdf of σL, which is determined
by the statistics of abutment movement, is cur-
rently not available. In this study we estimate
the cdf of σL by assuming: 1) σL follows a
Gaussian distribution with a CoV of 40%, and
2) the failure probability of the dam with a labo-
ratory test scale (i.e. D = 4l0) is equal to 10−6,
i.e., we assume that the dam was designed on
the basis of a laboratory prototype. Based on
these assumptions, we obtain the mean value of
σL to be 0.76 MPa.

5.2 Discussion based on Cornell index
According to the aforementioned statistics

of σN and σL, we can use Eq. 7 to calcu-
late the exact failure probability Pf for ge-
ometrically similar dams of six sizes D =
4l0, 8l0, 16l0, 24l0, 48l0 and 96l0. Note thatD =
24l0 is the actual size of the Malpsset dam
Da. As shown in Fig. 5, the structural failure
probability increases by three orders of magni-
tudes as the dam size D increases from 4l0 to
96l0. We now compare these exact failure prob-
abilities with the predictions by using the size-
dependent Cornell index.
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1 10 100
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Figure 5: Dependence of failure probability on dam size.

To compute the Cornell reliability index β,
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we first obtain the size effect on the mean and
variance of σN (Eqs. 11 and 12): Na = 0.25
MPa0.52·m, Nb = 5312.4 MPa12·m, r = 0.52,
Ca = 0.12 MPa1.48·m, Cb = 1.98 × 10−12

MPa12·m and q = 0.74. Fig. 6 compares Eqs.
11 and 12 with the exact mean value and vari-
ance of σN calculated from the weakest link
model. From the calibrated Eqs. 11 and 12,
we can calculate the Cornell index based on Eq.
13 as well as the structural failure probabilities
for different dam sizes.
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Figure 6: Approximated size effects on mean and vari-
ance of nominal strength.

Table 1: Comparison of calculated structural failure prob-
abilities Pf

Dam Size Exact Pf Φ(−β)
D = 4l0 1.05× 10−6 1.28× 10−6

D = 8l0 5.37× 10−5 2.66× 10−5

D = 16l0 3.84× 10−4 2.04× 10−4

D = 24l0 8.72× 10−4 5.11× 10−4

D = 48l0 2.57× 10−3 1.81× 10−3

D = 96l0 6.12× 10−3 4.89× 10−3

Table 1 compares the exact failure probabili-
ties and those calculated from the Cornell index
(i.e. Pf = Φ(−β)). It can be seen that the Cor-
nell index gives a reasonable estimation of the
failure probability even though the probability
distribution of σN is not Gaussian. To explain
this observation, we plot the value of the inte-
grand of Eq. 7 normalized by the failure prob-
ability, i.e. PR(x)fL(x)/Pf , for all dam sizes
as shown in Fig. 7. When the structure size
is small, the majority of PR(x) follows a Gaus-
sian cdf and the power-law tail makes a negligi-
ble contribution to the overall structural failure

probability. Therefore, the Cornell index is ex-
pected to give a good estimation of the overall
failure probability at the small-size limit.

At the large-size limit, Fig. 7 indicates
that almost the entire PR(x) contributes to the
structural failure probability. Although PR(x)
would follow a Weibull distribution, note that,
for the same mean and variance, the Gaussian
and Weibull distributions are close to each other
except for the left and right tails [9]. There-
fore, the Cornell index is also able to predict
the failure probability reasonably well. Based
on the Table 1, it can be seen that, for the in-
termediate size range, the failure probabilities
predicted by the Cornell index are within the
same order magnitude of the exact values. Here
it should be emphasized that the foregoing anal-
ysis is based on the assumption that the applied
nominal stress σL follows a Gaussian distribu-
tion. For a non-Gaussian distribution of σL, the
Cornell index may not able to lead to a reason-
able estimation of Pf .
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R
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Figure 7: Normalized integrand of Eq. 7.

5.3 Discussion on Central and Nominal
Safety Factors

The foregoing analysis shows that the struc-
tural failure probability of the dam increases
significantly with its size. We now calculate
the central and nominal safety factors (η̄ and η)
for these geometrically similar dams to ensure
a failure probability of Pc = 10−6 regardless of
the dam size.

In this study, we set the following parameters
for computing η̄ and η: the Weibull modulus
m = 24, the CoV of RVE strength ω = 0.15,

8
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and the ratio between the mean RVE strength
and the Weibull scaling parameter ψ = µ/s0 =
1.37. The Weibull scaling parameter s0 of RVE
strength distribution is determined so that the
overall structural failure probability be equal to
10−6. We do so by using Eq. 7. Then we
can compute the mean structural strength and
the corresponding values of ζ̄ and ζ for differ-
ent dam sizes. The exact values of ζ̄ and ζ are
shown by the circles in Figs. 8a and b.
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Figure 8: Calculated size effects on central and nominal
safety factors.

Eqs. 21 and 22 are now used to compute the
size dependence of central and nominal safety
factors. To use Eq. 21, we first determine func-
tions µr(D) and δ2r(D), which describe the size
effect on the mean and variance of the struc-
tural strength of the dam made of an artificial
RVE with the following statistical parameters:
m = 24, s0 = 1, µG = 1.37 and ω = 0.15.
By matching the small- and large-size asymp-
totes of Eq. 21 with Eqs. 17 and 19, we ob-
tain C = 2.835 MPa and γ = 2.4. Fig. 8a
shows that the central safety factors predicted
by Eq. 21 agree well with the exact values for
all dam sizes. It is interesting to observe that
the central safety factor decreases as the struc-
tural size increases. This is because, according
to Eq. 21, the size dependence on the central
safety factor is governed by the size effect on
the CoV of σN , which has a decreasing trend
in the present analysis. At the large size limit,
the structural strength follows a Weibull distri-
bution and, therefore, the CoV becomes invari-
ant with the structure size. Therefore, the size
dependence of the central safety factor will van-
ish as the structure size is sufficiently large.

For the nominal safety factor, we choose

kR = kL = 3. The prediction of Eq. 22 com-
pares well with the exact values of ζ in Fig. 8b.
In contrast to the size effect on the central safety
factor, ζ increases with the structure size. The
reason is that the decreasing in CoV of σN has
two effects on the nominal safety factor: 1) it
leads to a lower central safety factor, and 2) the
ratio between the nominal and mean values of
the structural strength becomes larger. As sug-
gested by Eq. 21, these two effects counter each
other. For the current kR value, effect 2 is more
dominant, which leads to an increasing ζ with
the structure size. If we choose a smaller kR
value, effect 1 would prevail and ζ would then
decrease with the structure size. Overall speak-
ing, due to the competition between these two
effects, the size effect on the nominal safety fac-
tor is less pronounced compared to that on the
central safety factor.

6 CONCLUSIONS
1. The finite weakest link model correctly

captures the size dependence of strength dis-
tribution of quasibrittle structures, which tran-
sitions from a grafted Gaussian-Weibull cdf at
the small size limit to a Weibull cdf at the large
size limit. The model agrees well with the mea-
sured strength histograms of various quasibrit-
tle materials, such as engineering, dental ceram-
ics, fiber composites and cold asphalt mixtures.

2. By assuming that the applied load fol-
lows a the Gaussian distribution, it is shown that
the Cornell index may give a reasonable esti-
mation of the failure probability of quasibrittle
structures. The scale effect on the Cornell index
can be obtained directly from the approximate
size effect equations on the mean and variance
of the structural strength.

3. Approximate size effect equations are
derived for the central and nominal safety fac-
tors by asymptotic matching. It is shown that
the size dependence of the safety factors is gov-
erned by the size effect on the coefficient of
variation of the structural strength, and the size
effect on the central safety factor is more pro-
nounced than that on the nominal safety fac-
tor. Such size dependence plays a critical role in
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the interpretation of small-scale laboratory test-
ing for the reliability-based design of full-scale
structures.
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