

BEHAVIOR AND ASSESSMENT OF MASSIVE STRUCTURES: AN OVERVIEW OF THE FRENCH RESEARCH PROGRAMS CEOS.fr AND VeRCoRs

J. Mazars*, P. Labbé[†] and B. Masson^{††}

*Grenoble Institute of Technology, France †EDF Paris, France - ^{††}EDF-SEPTEN Lyon, France

Short presentation

Full text : http://framcos.org/FraMCoS-9/Full-Papers/310.pdf

FraMCoS 9 – Berkeley May 29 – June 1, 2016

1. Structural main functions :

- 1. Stability strengthening capacity,
- 2. But, for special structures, specific properties are required for reinforced concrete cracking, deformability, sustainability, water & air leak-tightness...

2. However:

- 1. Standard rules (EC2, Model Code,...) do not fully address the case of massive elements :
 - thermo-Hydro-Mechanical (THM) effects, scale effects and structural effects induce specific response and preliminary cracking;
 - and, for massive slabs, walls and containment, shrinkage and creep are prevalent at an early and long-term age

To address these concerns, the French civil engineering community decided in 2008 to launch a national research project **CEOS.fr**..... and, in the wake of CEOS.fr, in view of addressing aging issue for reactor concrete containment, EDF launch in 2013 the **VeRCorRs** program

Objectives & Scientific contents

<u>**CEOS.fr means</u>**: Comportement et Evaluation des Ouvrages Spéciaux vis à vis de la Fissuration et du Retrait – Behavior and assessment of special structures with respect to cracking and shrinkage</u>

1. Scientific objectives

CEOS.fr

1.CEOS.fr intended to make a significant step in the engineering capabilities for predicting the expected crack pattern of special structures under anticipated inservice or extreme conditions.

2. Operational objectives

1.To contribute to reference documents (fib, CEB)

2. To propose evolution of standards (EC2)

3. To conceive appropriate engineering tools

3. Scientific topics, cracking analyses:

1. under monotonic load cases

2.at early-age (T-H-M effects)

3.for cyclic load cases

4. Implemented know-how

1.Modeling (material, structure)

- 2. Experimental approach and monitoring
- 3. Engineering practices

Vérification réaliste du confinement des réacteurs

Monitoring systems Which sensors ?

Temperature	> 200 PT100 probes	~ 30 thermocouples
Diameter variations	4 pendulums with 3 reading tables each	12 pendulums with 1 reading table each
Height variations	4 INVAR wires	4 INVAR wires
Strain	> 300 strain gauges2 km of fiber optic	~ 50 strain gauges -
Prestressing	4 dynamometers	4 dynamometers
Steel bar strain	80 strain gauges	-
Water content	~ 20 TDR and 20 pulse sensors	

Research program and schedule

Pressurization test

Local leak collectors